LIST OF APPENDICES

Sr. No.	Subject	Appendix	Para No.	Page No.
1	2	3	4	5
1.	Area Statement Details:			
	i) List of Forests transferred to Wildlife Division Sarahan	Appendix-I	1.11	1
	ii)List of Forest converted into New DPFs in Rampur Division	Appendix-II	1.11, XI+2.9	2-5
	iii)Range wise area Statement of Forests	Appendix-III	1.11	6
	iv) Range wise List of Forest and allotment of areas to working circles and Periodic blocks	Appendix-IV	1.11, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4	7-16
	a) Demarcated Protected Forest (showing new and old compartment numbers) along with area in hac. and allotment to different working circle	Appendix-V	1.11.1, 1.6	17-23
	b) Listed Un Demarcated Protected Forest (showing new and old compartment numbers) along with area in hac. and allotment to different working circle	Appendix-VI	1.11.1, 1.6	24-25
	v) General Abstract (showing the allotment of Forests to each Working Circles)	Appendix-VII	1.11.1	26
2.	Enumeration Results Working circle wise			
	a) The Chil Working Circle P.B. wise	Appendix-VIII	1.9, 2.7.5, 2.15.1, 2.15.2, 2.16	27-38
	b) The Deodar/Kail Working Circle P.B. wise	Appendix-IX	1.9, 3.7, 3.15.1, 3.15.2, 3.15.3	39-55
	c) The Fir/Spruce Working Circle P.B. wise	Appendix-X	1.9, 4.7.5, 4.15.1, 4.15.2, 4.15.3	56-68
	d) The Oak Working Circle P.B. wise	Appendix-XI	1.9, 6.7.5	69-70
3.	Estimated Growing Stock			
	a) The Chil Working Circle	Appendix-XII	1.9, 2.7.5, 2.15.3	71-72
	b) The Deo/Kail Working Circle	Appendix-XIII	1.9, 3.7	73-75
	c) The Fir/Spruce Working Circle	Appendix-XIV	1.9, 4.7.5	76-78
	d) The Oak Working Circle	Appendix-XV	1.9, 6.7.5	79

1	2	3	4	5
4.	Statement of past yield removed			
	a) The Chil Working Circle	Appendix-XVI	7.3	80-84
	b) The Deodar Working Circle	Appendix-XVII	7.3	85-89
	c) The Fir/Spruce Working Circle	Appendix-XVIII	7.3	90-94
	d) The Protection cum Rehabilitation	Appendix- XIX	7.3	95-97
	working circle			
	e) The Plantation Working Circle	Appendix- XX	7.3	98-100
	f) The Oak Working Circle	Appendix- XXI	7.3	101-103
5.	Rules, Notifications and			
	Guidelines/Instructions			
	i) Notification No. ft.43-241-A/49-2 Dated	Appendix-XXII	1.14, 1.15	104-111
	Shimla-4, the 25th February, 1952 regarding			
	rules to regulate the erstwhile Bushahr State			
	Forest under Section 32 of IFA, 1927 which			
	have been declared Protected Forest in H.P.			
	ii) Notification No. Ft.29-241/B/B/49 dated	Appendix- XXIII	1.14	112
	Shimla-4, the 25th February, 1952 regarding			
	declaring the provision of Chapter-IV of			
	Indian Forest Act, 1927 applicable to all			
	forest land and waste land in Himachal			
	Pradesh.			
	iii) Notification No. Ft.24-BB/49 Dated 13-	Appendix-XXIV	1.14	113
	11-1996 regarding all trees in the forests			
	declared protected by Himachal Pradesh			
	Government to be reserved under Section			
	30(a) of IFA, 1927 w.e.f. 1 st January, 1964.			
	iv) Copy of letter No. Ft. 48-66/83 (FCA)	Appendix- XXV	1.14	114
	HP Forest Department dated Shimla the			
	20 th April-2010 from PCCF, HP. to All CFs			
	(Ft & WL) regarding Road Construction-			
	Applicability of FCA,1980.	1	1140112	117 116
	v) Copy of letter No. Rev.B.A.(4)8/2004-	Appendix- XXVI	1.14, 9.11.3	115-116
	Loose dated 21-4-2006 from F.Ccum			
	Secretary (Revenue) to the Govt. of			
	Himachal Pradesh address to all Deputy			
	Commissioner/ Settlement Officers, SDO			
	(Civil) and Tehsildars regarding			
	implementation of notification issued by the			
	Govt. of Himachal Pradesh in the year 1952.	A 1' 37373777	1 15 1	117 126
	vi) Notification No. FFE-B-E(3)-43/2006-	Appendix-XXVII	1.15.1	117-126
	Vol-I Dated: Shimla-171002, 2nd January,			
	2010 regarding Himachal Pradesh Forest			
	(Timber Distribution to the Right Holders)			
	Rules, 2010.			

1	2	3	4	5
	vii) Notification No. FFE-B-A(3)-3/2010	Appendix- XXVIII	9.4.8	127-131
	dated 05-05-2010 regarding delegation of	7 ippendix 7171 v iii		
	power to all the Range Officers in charge of			
	the Ranges to compound forest offences			
	under section 68 of the IFA, 1927.			
	viii) Copy of letter contents of guidelines in	Appendix- XXIX	9.5.6	132-133
	respect of prevention and control of Forest	71ppendix 717tizt	2.500	
	Fires as laid down by Govt. of India vide			
	No. 9-6/99-FFD dated 22-6-2001.			
	ix) Notification No. FFE-A(C)7-1/96-11	Appendix-XXX	9.7	134-135
	dated Shimla-2, the 7-11-99 regarding	rippendix 7070	2.1.	
	framing of rules titled as "Himachal Pradesh			
	Forests (Protection from Fire) Rules, 1999".			
	x) Notification No. 1-21-LSG Dated,	Appendix-XXXI	9.10.3	136
	Shimla-2, the 8th June 1994 regarding	Appendix-MM	711010	150
	delegation of power to all the Divisional			
	Forest Officers of the department to perform			
	the functions of the Collector within their			
	jurisdiction, powers conferred by clause (a)			
	of Section 2 of the H.P. Public Premises &			
	Land (Eviction & Rent Recovery) Act, 1971			
	(Act No. 22 of 1971),			
	xi) Notification No. UD-A(3)8/2007-II	Appendix -XXXII	9.10.3	137
	Dated:Shimla-2, the 9-11-2012 regarding	Tippendix Tiririi		
	delegation of power to all ACF of forest			
	department to perform the function of the			
	Collector within their respective jurisdiction			
	of Forest Division of Circle in Kullu,			
	Mandi, Dharmshala, Rampur, Shimla and			
	Nahan under the aforesaid Act for the			
	period upto 31-3-2014			
	xii) Notification No. Ind-II(F)6-20/2005	Appendix -XXXIII	9.11.8	138
	dated 30.4.2011 regarding delegation of	Tipponom Timerin		
	powers to officers/officials to seize any			
	minerals raised or transported or caused to			
	transported by any person without any			
	lawful authority under the Mines and			
	Minerals (Development and Regulation)			
	Act, 1954.			
	xiii) Notification No.In-II(F)6-2/96-II dated	Appendix-XXXIV	9.11.8	139
	Shimla-2, the 17-3-2008 regarding power			
	to all the officers/officials including Forest			
	Guards to make complaints in writing in the			
	Court of competent Jurisdiction in respect of			
	any offence punishable under said Act or			
	any ruled made there under section 22 of			
	the Mines and Minerals (Development and			
	regulation) Act, 1957.			

1	2	3	4	5
	xiv) Notification No Ind-II(B)1-3-1997	Appendix-XXXV	9.11.8	140
	dated Shimla-2, the 30/07/2004 to authorize			
	officers of the Sub-Division Flying Squad			
	including ACF provided in River /Stream			
	Bed Mining policy Guidelines for the State			
	of Himachal Pradesh. 2004 to make			
	complaints in Court in writing in respect of			
	any offence punishable under the said Act			
	or any rules there under in their respective			
	jurisdiction			
	xv) Notification No. Ind-II(F) 6-2/96 dated	Appendix-XXXVI	9.11.8	141-142
	Shimla-2, the 30/04/2011 regarding	rippendix 717171 v i		
	authorize the Officers/Officials to make			
	complains in writing in the Court of			
	competent jurisdiction in respect of any			
	offence punishable under the Mines and			
	Minerals (Development and Regulation)			
	Act, 1957 (Act No. 67 of 1957)			
	xvi) Notification No. Fts.II(B) 15-10/87	Appendix-XXXVII	10.4	143-148
	Dated 23-8-2001 Regarding Himachal	Appendix-AAA v II	10.1	113 110
	Pradesh Participatory Forest Management			
	Regulations, 2001. xvii) Notification No. FTS. (F) LOOSE	Appendix –	11.8	149-151
		XXXVIII	11.0	147-131
	DATED SHIMLA-2/9-4-1996 regarding	AAAVIII		
	compensation on account of losses caused to			
	animal, human being by wild animals.	Appendix – XXXIX	11.8	152
	xviii)) Notification No. Fts-B-(F)-6-7/82-11	Appendix – AAAIA	11.0	132
	dated 27-8-2001 regarding compensation on account of losses caused to animal, human			
	•			
	being by wild animals.	A 1' VI	6.8	153
	xix) Copy of letter No. Fts (F)-13-38-84	Appendix -XL	0.8	133
	dated 11.3.1986 from Under Secretary			
	(Forests) to the Govt. of Himachal Pradesh			
	addressed to the Chief Conservator of			
	forests, H.P. Regarding Policy for the			
	felling of Ban/Oak trees.	A	9 6 7	154 150
	xx) List of 51 species enlisted by the Govt.	Appendix- XLI &	8.6.7	154-158
	Notification No. Fts(A)3-1/77 dated 17-8-	XLII		
	1993 and Fts-B(f)-13-49/98 Loose dated 4-			
	8-2000 to issue export permit under			
	Himachal Pradesh Forest Produce Transit			
	(Land Routes) Rules, 1978.	1	0.0.1	150
	xxi) Copy of letter No. 12-306/57(M) dated	Appendix- XLIII	8.9.1	159
	8-2-1994 from Pr. CCF H.P. to C.F. Rampur			
	regarding collection of Minor Forest			
	Produce and formulation of four years cycle			
	programme thereof.	_		
1	2	3	4	5

	xxii) Notification No. FFE-B-G (9)-9/94-II dated Shimla-2, the 28th February, 2003 regarding the powers conferred under sub section (2) of section 2 of the Indian Forest Act, 1927, the Governor, Himachal Pradesh is pleased to appoint Pradhans of the Gram Panchayats in Himachal Pradesh as Forest Officer to carry out the purpose of rule the purpose of Rule 11 of the Himachal Pradesh Forest produce Transit (Land Routs) Rule, 1978 for the issuance of export permit for transport of Minor Forest Produce.	Appendix- XLIV	8.6.7, 8.15.1	160-162
	xxiii) Notification No. Ft.43-241-E/49-3 Dated Shimla-4, the 25th February, 1952 regarding to prohibit the breaking up or clearing for cultivation for building, for herding cattle or for any other purpose of land in the Demarcated Protected Forests throughout Himachal Pradesh under Section 30(c) IFA, 1927.	Appendix- XLV	9.4.7	163
	xxiv)List of existing JFMC in respect of FDA Rampur Rampur Forest Division	Appendix- XLVI	10.7	164
	xxv) Copy of letter No. 17-29/75 (Rev-III) Dated Shimla-171002 the 4/5/1979 regarding entry of Forest land in the revenue record.	Appendix-XLVII	XI+2.6	165
	xxvi) Notification No.FFE-B-E(3)-31/2001-1 Dated: Shimla-2, the 19th February, 2011 regarding Hon'ble Apex court in writ Petition (C) 202 of 1995 titled – T.N. Godaverman Vs union of India and others decided that the 'compact wooded block' above 5 ha which are not recorded as 'forest' in the revenue record shall be treated as 'forest'.	Appendix- XLVIII	XI+2.34	166-168
6.	Order of the Supreme Court and H.P.			
	High Court xxvii) In the civil original jurisdiction writ petition civil) No. 202 of 1995 T.N. Godavarman Thirumulkpad Versus Union of India & Ors. Dated 12-12-1996.	Appendix- XLIX	1.14, 1.2	169-176
	xxviii) The Hon'ble H.P. High Court in State of H.P. V. Om Prakash, Cr. Appeal No. 516/2000 dated 14-11-2007	Appendix- L	1.14, 9.4.6, XI+2.4	177-179
	xxix) T.N. Godavarman Thirumulpad V. Union of India, WP(C) No. 202/95 with WP(C) No. 171/96 Environment Awareness Forum V. State of J&K, decided on 15-01- 1998	Appendix- LI	1.2	180-187

1	2	3	4	5
	xxx) T.N. Godavaraman Thirumulpad V.	Appendix- LII	1.2	188-192
	Union of India WP(C) No. 202/95, Hon'ble			
	decided on 12-05-2001.			
	xxxi) In The Hon'ble High Court of	Appendix- LIII	1.2	193-207
	Himachal Pradesh, Shimla LPA N. 152 of			
	07 with LPA Nos. 1, 2 of 2008 & CWP			
	Nos. 1661 of 2007 and 11 of 2008, H.P.			
	State Forest Corporation Ltd. v/s Ram Lal			
	and others ,decided on 28 th May, 2008.			
	xxxii) In the Hon'ble High Court of	Appendix- LIV	9.4.8	208-216
	Himachal Pradesh Shimla in the contempt			
	Petition No. 56/2009 titled as Kuldeep			
	Singh Chauhan v/s Balbir Thakur and			
	others, decided on 28-8-2009.			
	xxxiii) In the Hon'ble High Court of	Appendix- LV	9.10.3	217-219
	Himachal Pradesh Shimla, Cr.MP(M) No.			
	1299/2008 Yoginder Singh S/o. late Shri			
	Gulab Singh R/O. Village Bhatwari, Post			
	Office Kaloti, Tehsil Chirgaon, District			
	Shimla, H.P. Versus State of Himachal			
	Pradesh decided on 20.5.2011			
7.	Others			
	i) Record of right of user for the demarcated	Appendix - LVI	1.15	220-221
	forests of the Rampur Tehsil, Bushahr State			
	ii) List of Road/Path and existing List of	Appendix –LVII	XI+2.29	222-225
	existing buildings			
	iii) List of Ranges, Blocks and Beats	Appendix -LVIII	6.2	226-227
	iv) Manual for collection of field data for	Appendix- LIX	1.10, XI+4.3	228-233
	preparation of stock map/compartment			
	history files etc.			
8.	Bibliography	-	-	234-236

Appendix -I Detail of Forests transferred to Wildlife Division Sarahan

Sr. No.	Name of Forest	Compartme		Working Circle	Area (in hac.)						
		Old No.	New No.	1							
1	2	3	4	5	6						
A) D	aranghati Wildlife	Sanctuary									
		Part	: –I								
	Demarcated Protected Forest										
1	Marau	C-63 a	C-185 (a)	Fir Spruce	219.91						
2	Dhau Rua	C-63 b	C-185 (b)	Protection	60.75						
3	Jabai Dhar	C-63 c	C-185 (c)	Fir Spruce	152.68						
4	Khai Dhar	C-63 d	C-185 (d)	Fir Spruce	42.52						
5	Deori Dhar	C-63 e	C-185 (e)	Protection	81.4						
6	Runpu	C-63 f	C-185 (f)	Fir Spruce	132.84						
7	Bangi Saran	C-63 g	C-185 (g)	Fir Spruce	216.67						
		Total			906.77						
		Undemarcate	d Protected	Forest							
	Unlisted U.P.F.				1634.00						
		G. Total Part –I			2540.77						
		Part	-II								
		Demarcated	Protected F	orest							
1	Raungcha	C-37	C-159	Fir Spruce	336.15						
2	Debri Dansa	C-36	C-158	Protection	1,948.05						
		Total			2,284.20						
		G. Total Part –II			2,284.20						
	G.Total Darangha	` ′			4,824.97						
B) S	arahan Pheasantr	y at Sarahan									
	Unde	emarcated Protected	d Forest								
	U.P.F.				11.1237						
C) G	Gopalpur Pleasant	ry at Gopalpur for o	conservation	Breeding of th	e Western						
	gopan		T								
	Khasra No.18, 19,	20, 21, 22 & 23		Deodar/Kail	6.3366						
	Total Area of San	rahan & Gopalpur I	Pheasantry		17.4603						
	G. Total Aı	rea transferred to w	ildlife divisi	on	4,842.4303						

Appendix- II

		List of	UPF Forest	converted	d into New D		penuix- 11
Name of Range	Sr. No.	Name of Forest	Compart ment No.	Old area in Ha.	New Area in Ha.	Difference	Notification No. & Date
1	2	3	4	5	6	7	8
				lar/ Kail V		,	
Bahli	1	Gincha	UF- 58	26.32	21.6815	4.6385	No.FFE-B- F(5)1/98 dated 24.8.99
	2	Piran	UF- 59	12.15	7.5328	4.6172	do
	3	Saran	UF- 61	27.13	17.8039	9.3261	do
	4	Mandhog	UF- 63	48.6	36.4589	12.1411	do
	5	Dalog	UF- 64	36.85	15.4422	21.4078	do
	6	Kurnu	UF- 65	6.07	4.6890	1.381	do
	7	Bashri	UF- 66	40.5	22.0753	18.4247	do
	8	Nehra	UF- 67	35.64	35.7190	-0.079	do
	9	Balhi	UF- 68	176.17	49.5462	126.6238	do
	10	Chikri	UF- 85	4.05	4.4919	-0.4419	do
	11	Kukhi	UF- 91	169.69	60.3974	109.2926	Ft(B)5(S)5- 1/89 dated 23.2.89
Rampur	12	Sanathaly	UF- 1(b)	141.75	160.5427	-18.7927	Ft(A)7-4/87 dated 17.2.88
	13	Talai Dhar	UF- 71	121.5	121.2809	0.2191	FFE-B- F(5)1/98 dated 24.8.99
	14	Kandi	UF- 100	40.5	42.4351	-1.9351	do
	15	Munish Bahli	UF- 104	121.5	117.7409	3.7591	do
	16	Chiksa	UF- 109	101.25	249.4831	-148.2331	do
	17	Keem	UF- 111	121.5	61.3601	60.1399	do
	18	Shikkaridhar	UF- 115	194.4	179.4679	14.9321	do
Sarahan	19	Gauni	UF- 5	326.43	301.5065	24.9235	do
	20	Kundla Chunda II	UF- 6b	60.75	71.0296	-10.2796	do
	21	Hularuding II	UF- 11	61.56	39.1333	22.4267	Ft(A)7-21/86 dated 9.2.88
	22	Karai	UF- 14	224.37	162.4419	61.9281	FFE-B- F(5)1/98 dated 24.8.99
	23	Gamoghati	UF- 16a	17.41	24.8201	-7.4101	do

1	2	3	4	5	6	7	8
			(Chil W/C			•
Bahli	24	Khanotu	UF- 83	98.82	40.1297	58.6903	Ft(F)5-1/89 dated 19.3.90
	25	Taklech	UF- 89	22.68	5.9545	16.7255	FFE-B- F(5)1/98 dated 24.8.99
Bahli	26	Mandli	UF- 90	119.07	35.3032	83.7668	do
	27	Chalali	UF-82	36.45	16.0011	20.4489	do
	28	Sangaral	UF- 57(b)	40.5	38.5961	1.9039	do
	29	Sobli	UF- 69	149.85	46.8091	103.0409	do
	30	Majholi	UF- 49	44.55	122.6197	-78.0697	Ft(B)5(F)5- 1/89 dated 23.2.89
Rampur	31	Rasandli	UF- 78	22.27	30.8484	-8.5784	FFE-B- F(5)1/98 dated 24.8.99
	32	Jogni Upper	UF- 101	34.42	45.5751	-11.1551	do
	33	Khanewli	UF- 70	162	139.909	22.091	do
	34	Nirsu	UF- 72	48.6	20.7103	27.8897	do
	35	Rajpura	UF- 79	40.50	24.0951	16.4049	do
	36	Kumsu	UF- 81	36.45	14.5339	21.9161	do
	37	Jogni Lower	UF- 102	100.44	42.1317	58.3083	do
	38	Matiana	UF- 103	32.4	17.7115	14.6885	do
	39	Deothi	UF- 110	12.15	12.4112	-0.2612	do
	40	Anu	UF- 112	16.2	13.9142	2.2858	do
	41	Darshal	UF- 113	182.25	217.3497	-35.0997	do
	42	Sukigad	UF- 114	486	317.1051	168.8949	do
	43	Ruwan	UF- 116	40.5	28.1999	12.3001	do
	44	Shingla	UF- 118	68.85	13.0313	55.8187	do
	45	Brauni	UF- 3	81.81	59.713	22.097	Ft(A)7-4/87 dated 11.2.88
	46	Masheli	UF- 80	40.5	19.2179	21.2821	do
Sarahan	47	Kundla Chunda I	UF- 6a	387.99	154.1058	233.8842	FFE-B- F(5)1/98 dated 24.8.99
			Fir/S	Spruce W	/C		
Bahli	48	Jarashi	UF- 60	24.3	3.5602	20.7398	FFE-B- F(5)1/98 dated 24.8.99

1	2	3	4	5	6	7	8
Rampur	49	Thala	UF- 105	123.12	36.3214	86.7986	do
	50	Shareri	UF- 106	162.00	149.6082	12.3918	do
Sarahan	51	Ramagad	UF- 4	207.36	395.7387	-188.3787	do
	52	Kundla Chunda III	UF- 6(c)	263.25	191.7112	71.5388	do
	53	Kheucha	UF- 7	170.1	495.6117	-325.5117	Ft(A)7-21/86 dated 9.2.88
	54	Koot	UF- 8	318.33	763.8354	-445.5054	FFE-B- F(5)1/98 dated 24.8.99
	55	Rupnisugel	UF- 12	53.86	395.353	-341.493	Ft(A)7-21/86 dated 9.2.88
	56	Sharangad South	UF-17	140.53	112.0018	28.5282	do
	57	Sharangad North	UF-18	104.89	766.9464	-662.0564	FFE-B- F(5)1/98 dated 24.8.99
	58	Phancha II	UF- 19	84.24	46.5906	37.6494	Ft(A)7-21/86 dated 9.2.88
	59	Bohiyadhar	UF- 20	100.44	235.1642	-134.7242	do
	60	Bhujri	UF- 21	70.06	87.1723	-17.1123	do
	61	Sarpara	UF- 22	114.21	89.6817	24.5283	FFE-B- F(5)1/98 dated 24.8.99
	62	Deowara	UF- 9	373.41	599.6004	-226.1904	Ft(A)7-21/86 dated 9.2.88
	63	Hularuding I	UF- 10	241.78	333.3371	-91.5571	do
			(Oak W/C			
Bahli	64	Theda	UF- 84	32.4	44.4147	-12.0147	FFE-B- F(5)1/98 dated 24.8.99
	65	Damrali	UF- 86	149.44	37.2604	112.1796	Ft(B)5(F)5- 1/89 dated 23.2.89
	66	Barshol	UF- 88	82.62	12.4866	70.1334	FFE-B- F(5)1/98 dated 24.8.99
Rampur	67	Kareri	UF- 75	167.67	130.2665	37.4035	do

1	2	3	4	5	6	7	8
	68	Nogli	UF- 117	210.6	49.4191	161.1809	do
			Prot	ection W/	C C		
Bahli	69	Brandli	UF- 62	161.19	118.186	43.004	FFE-B- F(5)1/98 dated 24.8.99
	70	Chauka	UF- 76	32.40	50.1989	-17.7989	do
	71	Palasi Jal	UF- 95	1215	1181.8659	33.1341	Ft(B)5(F)5- 1/89 dated 23.2.89
	72	Marara	UF- 92	177.79	145.2582	32.5318	do
	73	Shalnu	UF- 93	134.05	97.7330	36.317	FFE-B- F(5)1/98 dated 24.8.99
	74	Sharlal	UF- 94	178.6	146.1247	32.4753	do
Rampur	75	Hans Beshan	UF- 96	5265	4689.2200	575.78	do
	76	Gatghor	UF- 97	601.83	289.9309	311.8991	do
	77	Kasha	UF- 98	443.07	422.6344	20.4356	do
	78	Pat	UF- 99	664.6	289.2541	375.3459	do
	79	Daran Ghati	UF- 107	62.37	57.3165	5.0535	do
	80	Saraikoti	UF- 108	121.50	110.4274	11.0726	do
	81	Tauni		0	227.2908	-227.2908	do
Sarahan	82	Kuimour		0	188.9878	-188.9878	do
	83	Jamu thach		0	72.9336	-72.9336	Ft(A)7-21/86 dated 9.2.88
		Total		16673	16346.5005	326.8495	

Appendix-III

	Range wise area statement of forest												
Name of WC	Nankhari Range			Bahli Range		Rampur Range			Sarahan Range			G. Total	
	DPF	Listed UPF	Total	DPF	Listed UPF	Total	DPF	Listed UPF	Total	DPF	Listed UPF	Total	
Deo/Kail	2604.46	530.93	3135.39	1106.8681	265.67	1372.5381	2152.1507	0	2152.1507	3758.2614	170.91	3929.1714	10589.2502
Fir/Spruce	2799.31	0	2799.31	4796.7102	0	4796.7102	219.9496	0	219.9496	6075.9945	106.51	6182.5045	13998.4743
Chil	40.50	547.55	588.05	1140.9234	321.560	1462.4834	1719.1073	0	1719.1073	154.1058	0	154.1058	3923.7465
Protection	0	0	0	2442.0367	0	2442.0367	6235.9241	0	6235.9241	764.5214	0	764.5214	9442.4822
Oak	0	16.20	16.20	94.1617	159.16	253.3217	179.6856	462.10	641.7856	0	0	0.0000	911.3073
Plantation	0	157.95	157.95	0	0	0	0	387.99	387.9900	9.720	0	9.7200	555.6600
Total	5444.27	1252.63	6696.90	9580.7001	746.39	10327.0901	10506.8173	850.09	11356.9073	10762.6031	277.42	11040.0231	39420.9205

 ${\bf Appendix\text{-}IV}$ Range wise list of forest and allotment of area of working circle and periodic blocks

				Kail Working reated Protecte				
Name of Range	Sr. No.	Name of Forest	Old Cmp No.	New Cmp No.	P.B.I	P.B.II	P.B.III	P.B.IV
1	2	3	4	5	6	7	8	9
Nankhari	1	Maniknun	C-70	C-2	66.42			
Mankhari	2	Maniknun	C-71	C-3			78.16	
	3	do	C-72	C-4		132.84		
	4	do	C-73	C-5			52.65	
	5	Taprog	C-74	C-6	28.75			
	6	Keoligad	C-75	C-7				91.12
	7	Gahan	C-78	C-10			24.7	
	8	do	C-79	C-11	87.48			
	9	do	C-80	C-12			21.06	
	11	Shilla	C-86	C-18	104.49			
	12	do	C-87	C-19		42.93		
	13	Tangridhar	C-92	C-24	26.32			
	14	Bagalti	C-94	C-26				130
	15	do	C-95	C-27				45.36
	16	Bagalti	C-96	C-28			38.88	
	17	Bhadral	C-97(b)	C-29 b		49.81		
	18	Bhadral	C-99	C-31	108.94			
	19	Bhorja	C-100	C-32			27.94	
	20	Bhorja	C-101	C-33				85.05
	21	Thailli	C-102	C-34		115.02		
	22	Nankhari	C-103	C-35				156.33
	23	Nankhari	C-104	C-36	57.91			
	24	do	C-105	C-37			39.28	
	25	Shioli	C-106	C-38			85.86	
	26	Kamoti dhar	C-107	C-39			39.28	
	27	do	C-108	C-40			23.08	
	28	Kamoti Dhar	C-109	C-41				38.07
	29	do	C-110	C-42			16.2	
	30	Katardhar	C-111	C-43	36.85			
	31	Punan	C-112	C-44			49.81	
	32	do	C-113	C-45	103.27			
	33	do	C-116	C-48				82.21
Nankhari	34	Garasu	C-117	C-49	92.74			

1	2	3	4	5	6	7	8	9
	35	Kungalmun der	C-118	C-50				106.11
	36	do	C-121	C-53				36.45
	37	Andela	C-124(a)	C-56 a			121.5	
	38	Banala	C-125	C-57	161.59			
		Total			874.76	340.6	618.4	770.7
				ndemarcated	Protected For	rest		
Nankhari	1	Samnu	C-26	C-4				38.47
	2	Tutu	C-27	C-5				19.44
	3	Nagadhar	C-28	C-6		129.6		
	4	Panil	C-29	C-7				16.2
	5	Banoga	C-30	C-8			12.15	
	6	Lelhan	C-37	C-15		104.08		
	7	Kungal	C-41	C-19	30.78			
	8	Bhaibahli	C-42	C-20	12.96			
	10	Tangri	C-43	C-21			36.04	
	11	Sandh	C-157	C-22	19.84			
	12	Jedharmila	C-158	C-23		14.17		
	13	Bamnoli	C-160	C-25		12.15		
Nankhari	14	Dharja	C-161	C-26		9.72		
	15	Gahan	C-162	C-27		21.87		
	16	Jahu	C-163	C-28				12.96
	17	Peojna	C-164	C-29		16.2		
	18	Baroli	C-167	C-32		4.05		
	19	Totan	C-171	C-36		20.25		
		Total			63.58	332.09	48.19	87.07
			Demar	cated Protect				
Bahli	1	Kandreri	C-126	C-58				8.91
	2	do	C-128	C-60			185.08	
	3	Surd South	C-130	C-62				9.72
	4	do	C-131	C-63				12.15
	5	Surd North	C-132	C-64				45.36
	6	do	C-133	C-65			71.28	
	7	do	C-134	C-66	47.38		0	
	8	Kaleda	C-135	C-67	34.83			
	9	do	C-136	C-68				30.37
	10	Beunthal	C-137	C-69				97.2
	11	do	C-138	C-70	98.01			7,.2
	12	do	C-139	C-71	34.83			
	15	Bhamrala	C-139	C-71 C-80	37.03			54.67
	16	Bahli	C-148	C-80 C-81				12.15
	17	do	C-149 C-150	C-81 C-82			46.57	12.13
	1 /	uo	C-130	C-82			40.37	

1	2	3	4	5	6	7	8	9
Bahli	18	do	C-151	C-83	38.47			
	19	Seri Majha	C-156	C-88			4.05	
	20	Gincha	C-58	NDPF C-3			21.6815	
	21	Piran	C-59	NDPF C-4			7.5328	
	22	Saran	C-61	NDPF C-6		17.8039		
Bahli	23	Mandhog	C-63	NDPF C-8			36.4589	
	24	Dalog	C-64	NDPF C-9		15.4422		
	25	Kurnu	C-65	NDPF C-10				4.689
	26	Bashri	C-66	NDPF C-11				22.0753
	27	Nehra	C-67	NDPF C-12			35.719	
	28	Balhi	C-68	NDPF C-13		49.5462		
	29	Chikri	C-85	NDPF C-19				4.4919
	30	Kukhi	C-91	NDPF C-24	60.3974			
		To	tal		313.9174	82.7923	408.3722	301.7862
		<u> </u>	Undema	arcated Protect	ed Forest	<u> </u>	1	
Bahli	1	Sridhar	C-44	C-38				47.79
	2	Khamadi	C-45	C-39				12.15
	3	Kandrer	C-47	C-41	35.64			
	4	Surd	C-48	C-42			12.96	
	5	Erli	C-50	C-43				10.93
	6	Beunthal	C-52	C-45	45.36			
	7	Ghat	C-53	C-46			19.84	
	9	Boltidhar	C-77	C-51			81	
		To	tal		81.00	0	113.80	70.87
	I		Demar	cated Protecte	d Forest			
Rampur	1	Punar	C-160	C-90		125.14		
	2	Munish E.	C-161	C-91			110.56	
	3	do	C-162	C-92		200.47		
	4	Munish N.	C-163	C-93		28.35		
	5	do	C-164	C-94	274.18			
	6	Sanathaly	C-179a	C-109 a			114.21	
	7	Sanathaly	C-179b	C-109 b	77.76			
	8	Tauni	C-180(a)1	C-110 b		121.5		
	9	Banauli	C-180(b)1	C-110 c		36.45		
Rampur	10	Pashada	C-180(c)2	C-110 f			77.76	
	11	Baltidhar	C-180(d)2	C-110 h	53.46			
	12	Sanathaly	C-1(b)	NDPF C-29			160.5427	
	13	Talai Dhar	C-71	NDPF C-32			100.5747	121.2809
	14	Kandi	C-100	NDPF C-43				42.4351
	15	Munish Bahli	C-104	NDPF C-47			117.7409	

1	2	3	4	5	6	7	8	9
	16	Chiksa	C-109	NDPF C-52		249.4831		
Rampur	17	Keem	C-111	NDPF C-54		61.3601		
•	18	Shikaridhar	C-115	NDPF C-58				179.4679
		Tot			405.4	822.7532	580.8136	343.184
			Dema	rcated Protected	d Forest			
Sarahan	1	Phanoti	C-182c	C-112 c			170.1	
	2	Maghara	C-184	C-114				126.76
	3	Mule dhar	C-190a	C-120 a				38.88
	4	Kinpheul	C-190b	C-120 b			135.27	
	5	Kot	C-190c	С-120 с				69.66
	6	Khiruwa	C-190d	C-120 d		122.31		
	7	Thekwa	C-190e	C-120 e			81.4	
	8	Kheunch	C-191a	C-121 a			60.34	
	9	Hularuding	C-191d	C-121 d		203.31		
	10	Rupisuglig	C-191e1	C-121 e		44.55		
	11	Khutani	C-191f	C-121 g				78.97
	12	Kilpa	C-192	C-122			83.83	
	13	Ruwancha E.	C-193a	C-123 a		42.93		
	14	Ruwancha W.	C-193b	C-123 b			86.67	
	15	Chalandi D	C-194	C-124				56.7
Sarahan	16	Chaland Pat	C-195	C-125	98.41			
	17	Kuimori Gad	C-196	C-126			49.41	
	18	Kuimori Dhar	C-197	C-127				53.46
	19	Patni Punj	C-198a	C-128 a			65.61	
	20	Bajadhar	C-198b	C-128 b			88.29	
	21	Jaghori	C-198c	C-128 c	68.85			
	22	Karai	C-199	C-129		69.66		
	23	Tikkar	C-200	C-130		96.79		
	24	Kundken	C-201	C-131			30.78	
	25	Sadholi Gad	C-202	C-132				93.55
	26	Nanti Gad	C-203	C-133	57.51			
	27	Saranga N.	C-206	C-136	106.11			
	28	Saranga S.	C-207	C-137		65.2		
	29	Phancha	C-208	C-138			71.68	
	30	Dharapori	C-209a	C-139 a			49.41	
	31	Boihaoi Dhar	C-209b	C-139 b			78.16	
	32	Bhujri	C-210b	C-140 b	121.09			
	33	Dorigad	C-211	C-141				11.34

1	2	3	4	5			6	7	7		8	9
Sarahan	34	Sarpara	C-212a	C-142	2 a			122	2.71			
S41 411411	35	Chechi	C-214	C-14	4			147	.01			
	36	Duhnku	C-215b	C-145	5 b							89.1
	37	Sukachho	C-215c	C-145	5 с							123.52
	38	Gauni	C-5	NDPF (C-64	30	1.5065					
	39	Kundla Chunda	C-6b	NDPF (C-66			71.0)296			
	40	Hularuding II	C-11	NDPF (C-72							39.1333
	41	Karai	C-14	NDPF (C-74							162.441
	42	Gamoghati	C-16a	NDPF (C-75			24.8	3201			
		Total				75.	3.4765	1010	.3197	105	50.9500	943.515
			Undema	rcated P	rotect	ed F	orest		I		I	
Sarahan	1	Kalaindidha r	C-13a	C-57	a			72	2.9			
	2	Kandri	C-15	C-58	3	9	8.01					
		Total				9	8.01	72	2.9		0	0
				oruce Wo								
Nankhari	1	Sidhpura	Demar C-69	cated Pro	otecte C-1	d Fo	rest					131.2
Mankhari		_									50.55	131.2
	2	Gahan	C-76		C-8						60.75	122.1
	3	do	C-77		C-9							123.1
	4	Peojna	C-81		C-13		20.2	_				58.3
	5	Peojna	C-83		C-15		20.2					
	6	do	C-82		C-14		119.0					
	7	do	C-84		C-16		102.4	-6			50.65	
	8	Shila	C-85		C-17		122.0	14			52.65	
	9	Baghat	C-88		C-20		133.2					
	10	do	C-89		C-21		184.2	27			1 4 1 0 4	
	11	do	C-90		C-22			10			141.34	
	12	Tangridhar	C-91		C-23		144.5	08	1.60.6	20		
	13 14	do Bhadral	C-93 C-97(c		C-25 C-29(c				76.1			
	15	do	C-98		C-30		104.0	08				
	16	Punan	C-114		C-46		189.1	3				
	17	do	C-115		C-47		307.	8				
	18	Kungal Mundar	C-119		C-51				150.6	56		
	19	Kungal Mundar	C-120		C-52		141.7	'5				
	20	Bahali	C-122		C-54		151.0)6				
	21	Bai	C-123		C-55				63.5	8		
	22	Andela	C-124(t	(c)	C-56(b)						174.5
		Total					1597.	69	459.0	67	254.74	487.2

1	2	3	4	5	6	7	8	9
		1	Demarc	ated Protected	Forest		'	
Bahli	1	Kandreri	C-127	C-59		166.45		
	2	Saran Jarasi	C-140	C-72				507.06
	3	Saran Jarasi	C-141	C-73	31.18			
	4	do	C-142	C-74			70.47	
	5	do	C-143	C-75	34.42			
	6	do	C-144	C-76				162.81
	7	do	C-145	C-77				439.83
	8	do	C-146	C-78	324			
	9	Theda	C-152	C-84		127.57		
Bahli	10	do	C-153	C-85				77.76
Duill	11	do	C-154	C-86	280.66			
	12	Teklech	C-155	C-87		814.86		
	13	Kuki Dhar	C-157	C-89			1756.08	
	14	Jarashi	C-60	NDPF C-5				3.5602
		Tot	al		670.26	1108.88	1826.55	1191.0202
		100		ated Protected		1100.00	1020.55	1171.0202
Rampur	1	Banauli	C-180(b)2	C-110 d		34.02		34.02
	2	Thala	C-105	NDPF C-48				36.3214
	3	Shareri	C-106	NDPF C-49				149.6082
		Tot	al			34.02	0	219.9496
				ated Protected	Forest	1		
Sarahan	1	Saraikot	C-182a	C-112 a			70.47	
	2							
		Gaura	C-182b	C-112 b		113.8		
	3	Jumkurai	C-183	C-113	153.49	113.8		
	4	Jumkurai Bari	C-183 C-187	C-113 C-117	153.49	113.8	78.97	
		Jumkurai Bari Kundlu	C-183	C-113	153.49	113.8	78.97	319.14
	4	Jumkurai Bari	C-183 C-187	C-113 C-117	153.49	113.8	78.97 42.52	319.14
	5	Jumkurai Bari Kundlu chaunda	C-183 C-187 C-189	C-113 C-117 C-119	153.49	113.8		319.14
	4 5 6	Jumkurai Bari Kundlu chaunda Kot	C-183 C-187 C-189 C-191b	C-113 C-117 C-119 C-121 b	153.49			319.14
	4 5 6 7	Jumkurai Bari Kundlu chaunda Kot Deora	C-183 C-187 C-189 C-191b C-191c	C-113 C-117 C-119 C-121 b C-121 c	153.49		42.52	319.14
	4 5 6 7 8	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig	C-183 C-187 C-189 C-191b C-191c C-191e2	C-113 C-117 C-119 C-121 b C-121 c C-121 f	153.49	187.51	42.52	319.14
	4 5 6 7 8 9	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig Katbari	C-183 C-187 C-189 C-191b C-191c C-191e2 C-205	C-113 C-117 C-119 C-121 b C-121 c C-121 f C-135	153.49	187.51	42.52	319.14
	4 5 6 7 8 9	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig Katbari Kandri	C-183 C-187 C-189 C-191b C-191c C-191e2 C-205 C-210a	C-113 C-117 C-119 C-121 b C-121 c C-121 f C-135 C-140 a	153.49	187.51 117.04 99.22	42.52	319.14
	4 5 6 7 8 9 10	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig Katbari Kandri Gamoghati	C-183 C-187 C-189 C-191b C-191c C-191e2 C-205 C-210a C-210c	C-113 C-117 C-119 C-121 b C-121 c C-121 f C-135 C-140 a C-140 c		187.51 117.04 99.22	42.52	319.14
	4 5 6 7 8 9 10 11 12	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig Katbari Kandri Gamoghati Margot	C-183 C-187 C-189 C-191b C-191c C-191e2 C-205 C-210a C-210c C-212b	C-113 C-117 C-119 C-121 b C-121 c C-121 f C-135 C-140 a C-140 c C-142 b		187.51 117.04 99.22 43.33	42.52	319.14
	4 5 6 7 8 9 10 11 12 13	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig Katbari Kandri Gamoghati Margot Sechigad Ramagad Kundla	C-183 C-187 C-189 C-191b C-191c C-191e2 C-205 C-210a C-210c C-212b C-212c	C-113 C-117 C-119 C-121 b C-121 c C-121 f C-135 C-140 a C-140 c C-142 b C-142 c	81	187.51 117.04 99.22 43.33	42.52	319.14
	4 5 6 7 8 9 10 11 12 13 14	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig Katbari Kandri Gamoghati Margot Sechigad Ramagad	C-183 C-187 C-189 C-191b C-191c C-191e2 C-205 C-210a C-210c C-212b C-212c C-4	C-113 C-117 C-119 C-121 b C-121 c C-121 f C-135 C-140 a C-140 c C-142 b C-142 c NDPF C-63	81	187.51 117.04 99.22 43.33	42.52	
	4 5 6 7 8 9 10 11 12 13 14	Jumkurai Bari Kundlu chaunda Kot Deora Rupisuglig Katbari Kandri Gamoghati Margot Sechigad Ramagad Kundla Chunda III	C-183 C-187 C-189 C-191b C-191c C-191e2 C-205 C-210a C-210c C-212b C-212c C-4 C-6(c)	C-113 C-117 C-119 C-121 b C-121 c C-121 f C-135 C-140 a C-140 c C-142 b C-142 c NDPF C-63 NDPF C-67	81	187.51 117.04 99.22 43.33	127.57	

1	2	3	4	5	6	7	8	9
	19	Hularuding I	C-10	NDPF C-71				333.3371
	20	Rupnisugel	C-12	NDPF C-73				395.3530
	21	Sharangad S	C-17	NDPF C-76		112.0018		
	22	Sharangad N	C-18	NDPF C-77		766.9464		
	23	Phancha II	C-19	NDPF C-78	46.5906			
	24	Bohiyadhar	C-20	NDPF C-79			235.164	
	25	Bhujri	C-21	NDPF C-80			87.1723	
	26	Sarpara	C-22	NDPF C-81			89.6817	
		Tota	ıl		1276.4197	1569.0382	1990.9953	1239.5413
			Undema	rcated Protecte	d Forest			
Sarahan	1	Kalaindidhar	C-13(b)	C-57 b	92.34			
Surunun	2	Gamoghati	C-16(b)	C-59		14.17		
		Tota	 al		92.34	14.17	0	0
		100		il Working Cir		14,17	V	<u> </u>
				cated Protected	Forest	ı	1	
Nankhari	1	Bhadral	C-97(a)	C-29 a			40.5	
		Total			0	0	40.5	0
			Undema	rcated Protecte	d Forest			
Nankhari	1	Banola	C-31	C-9				24.30
	2	Balani	C-32	C-10			40.5	
	3	Dalahu	C-33	C-11			28.35	
	4	Batanal	C-34	C-12				24.30
	5	Kandal	C-35	C-13				48.60
	6	Trena	C-36	C-14			52.65	
	7	Santhal	C-38	C-16			115.83	
	8	Kaleli	C-39	C-17		20.65		
	9	Paradhar	C-40	C-18		51.84		
	10	Chachi	C-159	C-24	40.50			
	11	Gutru	C-165	C-30	10.12			
	12	Chebri	C-168	C-33	16.20			1
	13	Jalthani	C-169	C-34	41.31			
	14	Nangalni	C-170	C-35	16.20			
	15	Latehri	C-172	C-37	16.20			
	1.5	Total			140.53	72.49	237.33	97.2
		<u> </u>	Demar	cated Protected		12,77	<u> </u>	71,4
Bahli	1	Majholi	C-49	NDPF C-1			122.6197	
	2	Sangaral	C-57(b)	NDPF C-2	38.5961			
	3	Sobli	C-69	NDPF C-14				46.8091
	4	Chalali	C-82	NDPF C-16			16.0011	
	5	Khanotu	C-83	NDPF C-17	40.1297			
	6	Taklech	C-89	NDPF C-22	5.9545			

1	2	3	4	5	6	7	8	9
	7	Mandli	C-90	NDPF C-23	35.3032			
	8	Kandreri	C-129	C-61	69.66			
	9	Karphala	C-168	C-98	39.69			
	10	Gendla Ser	C-166	C-96				132.84
	11	Agadhar	C-167	C-97			157.14	
	12	Challali	C-173	C-103				102.06
	13	Rajpura	C-174	C-104			143.37	
	14	Kateri	C-175	C-105	29.97			
	15	Khanoutu	C-176	C-106				60.75
	16	Kuban	C-177	C-107				57.51
	17	Kuban	C-178	C-108	42.52			
		Total			301.8235	0.0000	439.1308	399.9691
				rcated Protected				
Bahli	1	Dansa	C-46	C-40	52.24			
	2	Nathal Dhar	C-51	C-44			81	
	3	Majheot	C-54	C-47			81	
	4	Paucha	C-55	C-48				56.7
	5	Pei	C-56	C-49				50.62
		То	tal		52.24	0	162	107.32
				cated Protected				
Rampur	1	Brauni	C-3	NDPF C-30	59.713			
	2	Khanewli	C-70	NDPF C-31		139.909		
	3	Nirsu	C-72	NDPF C-33				20.7103
	4	Rasandli	C-78	NDPF C-35		30.8484		
	5	Rajpura	C-79	NDPF C-36		24.0951		
	6	Masheli	C-80	NDPF C-37				19.2179
	7	Kumsu	C-81	NDPF C-38			14.5339	
	8	Jogni Upper	C-101	NDPF C-44	45.5751			
	9	Jogni Lower	C-102	NDPF C-45				42.1317
	10	Matiana	C-103	NDPF C-46			17.7115	
	11	Deothi	C-110	NDPF C-53			12.4112	
	12	Anu	C-112	NDPF C-55		13.9142		
	13	Darshal	C-113	NDPF C-56				217.3497
	14	Sukigad	C-114	NDPF C-57		317.105 1		
	15	Ruwan	C-116	NDPF C-59			28.1999	
	16	Shingla	C-118	NDPF C-61			13.0313	
	17	Kareri	C-169	C-99	56.29			
	18	Kareri	C-170	C-100		128.79		
l		1			1	1		
	19	Darshal	C-171	C-101	77.76			

1	2	3	4	5	6	7	8	9
	21	Tauni	C-180(a)	C-110 a	68.44			
	22	Pashada	C-180 c 1	C-110 e			54.67	
	23	Baltidhar	C-180 d 1	C-110 g			40.5	
	24	Barauni Upper	C-181 a	C-111 a		84.64		
	25	Barauni Lower	C-181(b)	C-111 b	132.84			
		To	tal		440.6181	798.0218	181.0578	299.4096
			Demar	cated Protected	Forest			
Sarahan	1	Kundla Chunda I	C-6a	NDPF C-65	0	0	0	154.1058
		Total			0	0	0	154.1058

		Plantation Wo	rking Circle		
Name of Range	Sr. No.	Name of Forest	Old comp.	New comp.	Area
1	2	3	4	5	6
		Undemarcated P	rotected Forest		1
Nankhari	1	Chabair	C-23	C-1	52.65
	2	Ropari	C-24	C-2	52.65
	3	Narola	C-25	C-3	52.65
		Total			157.95
	1	Undemarcated P	rotected Forest		I
Rampur	1	Sanathaly	C-1a	C-53	157.95
•	2	Tauni	C-2	C-54	230.04
		Total			387.99
	•	Demarcated Pro	otected Forest		
Sarahan	1	Dharan	C-185h	C-115	4.86
	2	Bhagwat	C-188	C-118	4.86
		Total			9.72
	•	Oak Work		•	
		Undemarcated P			
Nankhari	1	Chitrali	C-166	C-31	16.2
		Total			16.2
		Demarcated Pr	otected Forest		
Bahli	1	Theda	C-84	NDPF C-18	44.4147
	2	Damrali	C-86	NDPF C-20	37.2604
	3	Barshol	C-88	NDPF C-21	12.4866
		Total			94.1617
	•	Undemarcated P	rotected Forest		
Bahli	1	Majholi	C-87	C-52	121.5
	2	Sangaral	C-57(a)	C-50	37.66

1	2	3		4	5	6
		Total				159.16
		Demarcated	d Pro	tected Fores	t	
Rampur	1	Kareri	C-7	75	NDPF C-34	130.2665
	2	Nogli	C-1	17	NDPF C-60	49.4191
		Total				179.6856
		Undemarcate	ed Pı			
Rampur	1	Sangri Kap		C-73	C-55	236.92
	2	Kamlahu		C-74	C-56	225.18
		Total				462.10
				rking Circle		
	1		d Pro	tected Fores		502.65
Bahli	1	Saran Jarasi		C-147	C-79	702.67
	2	Brandli		C-62	NDPF C-7	118.1860
	3	Chauka		C-76	NDPF C-15	50.1989
	4	Palasi Jal		C-95	NDPF C-28	1181.8659
	5	Marara		C-92	NDPF C-25	145.2582
	6	Shalnu		C-93	NDPF C-26	97.733
	7	Sharlal		C-94	NDPF C-27	146.1247
		Total				2442.0367
		Undemarcate				
	1	Langari Ka	1 Pro	C-165	t C-95	149.85
Rampur	2	Hans Beshar		C-103	NDPF C-39	4689.2200
	3		.1	C-90 C-97	NDPF C-40	289.9309
	4	Gatghor Kasha		C-97	NDPF C-40	422.6344
	5	Pat		C-98	NDPF C-41	289.2541
	6		:		NDPF C-42 NDPF C-50	
		Daran Ghat	<u> </u>	C-107		57.3165
	7	Saraikoti		C-108	NDPF C-51	110.4274
	8	Toni			NDPF C-62	227.2908
		Total				6235.9241
		Undemarcate				
~ .	<u> </u>		d Pro	tected Fores		22.40
Sarahan	1	Manglad		C-186	C-116	32.40
	2	Sagori Dhar		C-204a	C-134 a	76.14
	3	Segta Dhar		C-204b	C-134 b	57.51
	4	Imarifall		C-213a	C-143 a	110.97
	5	Manjkalan		C-213b	C-143 b	90.72
	6	Suga		C-215a	C-145 a	39.69
	7	Selti		C-215d	C-145 d	95.17
	8	Kuimoridha			NDPF C-82	188.9878
	9	Jamu Thach			NDPF C-83	72.9336
		Total				764.5214

Appendix-V
Range wise area statement of forest (showing new and old compartment numbers) area in hac. and allotment to different working circle

a) Demarcated protected forests

Name of Range	Sr. No.	Name of Forest	Old Compartment No.	New Compartment No.	Area in Ha.	Allotment of working circle
1	2	3	4	5	6	7
Nankhari	1	Sidhpur	69	1	131.22	F/S PB-IV
	2	Maniknun	70	2	66.42	D/K PB-I
	3	Maniknun	71	3	78.16	D/K PB-III
	4	Maniknun	72	4	132.84	D/K PB-III
	5	Maniknun	73	5	52.65	D/K PB-III
	6	Taprog	74	6	28.75	D/K PB-I
	7	Keoligad	75	7	91.12	D/K PB-IV
	8	Gahan	76	8	60.75	F/S PB-III
	9	Gahan	77	9	123.12	F/S PB-IV
	10	Gahan	78	10	24.70	D/K PB-III
	11	Gahan	79	11	87.48	D/K PB-I
	12	Gahan	80	12	21.06	D/K PB-III
	13	Peojna	81	13	58.32	F/S PB-IV
	14	Peojna	82	14	119.07	F/S PB-I
	15	Peojna	83	15	20.25	D/K PB-I
	16	Peojna	84	16	102.46	F/S PB-I
	17	Shilla	85	17	52.65	F/S PB-III
	18	Shilla	86	18	104.49	D/K PB-I
	19	Shilla	87	19	42.93	D/K PB-II
	20	Bhagat	88	20	133.24	F/S PB-I
	21	Bhagat	89	21	184.27	F/S PB-I
	22	Bhagat	90	22	141.34	F/S PB-III
	23	Tangridhar	91	23	144.58	F/S PB-I
	24	Tangridhar	92	24	26.32	D/K PB-I
	25	Tangridhar	93	25	169.29	F/S PB-II
	26	Bagalti	94	26	130	D/K PB-IV
	27	Bagalti	95	27	45.36	D/K PB-IV
	28	Bagalti	96	28	38.88	D/K PB-III
	29	Bhadral	97 a	29 a	40.5	C WC PB-III
	30	Bhadral	97 b	29 b	49.81	D/K PB-II
	31	Bhadral	97 c	29 с	76.14	F/S PB-II
	32	Bhadral	98	30	104.08	F/S PB-I
	33	Bhadral	99	31	108.94	D/K PB-I

1	2	3	4	5	6	7	
	34	Bhorja	100	32	27.94	D/K PB-III	
	35	Bhorja	101	33	85.05	D/K PB-IV	
	36	Thailli	102	34	115.02	D/K PB-II	
	37	Nankhari	103	35	156.33	D/K PB-IV	
	38	Nankhari	104	36	57.91	D/K PB-I	
	39	Nankhari	105	37	39.28	D/K PB-III	
	40	Sholi	106	38	85.86	D/K PB-III	
	41	Kamoti dhar	107	39	39.28	D/K PB-III	
	42	Kamoti dhar	108	40	23.08	D/K PB-III	
	43	Kamoti dhar	109	41	38.07	D/K PB-IV	
	44	Kamoti dhar	110	42	16.2	D/K PB-III	
	45	Katardhar	111	43	36.85	D/K PB-I	
	46	Punan	112	44	49.81	D/K PB-III	
	47	Punan	113	45	103.27	D/K PB-I	
	48	Punan	114	46	189.13	F/S PB-I	
	49	Punan	115	47	307.8	F/S PB-I	
	50	Punan	116	48	82.21	D/K PB-IV	
	51	Garasu	117	49	92.74	D/K PB-I	
	52	Kungalmunder	118	50	106.11	D/K PB-IV	
	53	Kungalmunder	119	51	150.66	F/S PB-II	
	54	Kungalmunder	120	52	141.75	F/S PB-I	
	55	Kungalmunder	121	53	36.45	D/K PB-IV	
	56	Bahli	122	54	151.06	F/S PB-I	
	57	Bai	123	55	63.58	F/S PB-II	
	58	Andela	124 a	56 a	121.5	D/K PB-III	
	59	Andela	124 b	56 b	174.55	F/S PB-IV	
	60	Banala	125	57	161.59	D/K PB-I	
Bahli	61	Kandreri	126	58	8.91	D/K PB-IV	
	62	Kandreri	127	59	166.45	F/S PB-II	
	63	Kandreri	128	60	185.08	D/K PB-III	
	64	Kandreri	129	61	69.66	CWC PB-I	
	65	Surd South	130	62	9.72	D/K PB-IV	
	66	Surd South	131	63	12.15	D/K PB-IV	
	67	Surd North	132	64	45.36	D/K PB-IV	
	68	Surd North	133	65	71.28	D/K PB-III	
	69	Surd North	134	66	47.38	D/K PB-I	
	70	Kaleda	135	67	34.83	D/K PB-I	
	71	Kaleda	136	68	30.37	D/K PB-IV	
	72	Beunthal	137	69	97.2	D/K PB-IV	
	73	Beunthal	138	70	98.01	D/K PB-I	
	74	Beunthal	139	71	34.83	D/K PB-I	
	75 75	Saran Jarashi	140	72	507.06	F/S PB-IV	
	76 Saran Jarashi		141	73	31.18	D/K PB-I	

1	2	3	4	5	6	7	
	77	Saran Jarashi	142	74	70.47	F/S PB-III	
	78	Saran Jarashi	143	75	34.42	D/K PB-I	
	79	Saran Jarashi	144	76	162.81	F/S PB-IV	
	80	Saran Jarashi	145	77	439.83	F/S PB-IV	
	81	Saran Jarashi	146	78	324	F/S PB-I	
	82	Saran Jarashi	147	79	702.67	PWC	
	83	Bhamrala	148	80	54.67	D/K PB-IV	
	84	Bahli	149	81	12.15	D/K PB-IV	
	85	Bahli	150	82	46.57	D/K PB-III	
	86	Bahli	151	83	38.47	D/K PB-I	
	87	Theda	152	84	127.57	F/S PB-II	
	88	Theda	153	85	77.76	F/S PB-IV	
	89	Theda	154	86	280.66	F/S PB-I	
	90	Taklech	155	87	814.86	F/S PB-II	
	91	Seri Majhali	156	88	4.05	D/K PB-III	
	92	Kuki Dhar	157	89	1756.08	F/S PB-III	
Bahli	93	Majholi	49	NDPF 1	122.6197	CWC PB-III	
	94	Sangral	57 b	NDPF 2	38.5961	CWC PB-I	
	95	Gincha	58	NDPF 3	21.6815	D/K PB-III	
	96	Piran	59	NDPF 4	7.5328	D/K PB-III	
	97	Jarashi	60	NDPF 5	3.5602	F/S PB-IV	
	98	Saran	61	NDPF 6	17.8039	D/K PB-II	
	99	Brandli	62	NDPF 7	118.186	PWC	
	100	Mandhog	63	NDPF 8	36.4589	D/K PB-III	
	101	Dalog	64	NDPF 9	15.4422	D/K PB-II	
	102	Kurnu	65	NDPF 10	4.689	D/K PB-IV	
	103	Bashri	66	NDPF 11	22.0753	D/K PB-IV	
	104	Nehra	67	NDPF 12	35.719	D/K PB-III	
	105	Bahli	68	NDPF 13	49.5462	D/K PB-II	
	106	Sobli	69	NDPF 14	46.8091	CWC PB-IV	
	107	Chauka	76	NDPF 15	50.1989	PWC	
	108	Chalali	82	NDPF 16	16.0011	CWC PB-III	
	109	Khanotu	83	NDPF 17	40.1297	CWC PB-I	
	110	Theda	84	NDPF 18	44.4147	Oak WC	
	111	Chikri	85	NDPF 19	4.4919	D/K PB-IV	
	112	Damrali	86	NDPF 20	37.2604	Oak WC	
	113	Barshol	88	NDPF 21	12.4866	Oak WC	
	114	Taklech	89	NDPF 22	5.9545	CWC PB-I	
	115	Mandli	90	NDPF 23	35.3032	CWC PB-I	
	116 Kukhi	91	NDPF 24	60.3974	D/K PB-I		
	117	Marara	92	NDPF 25	145.2582	PWC	
	118	Shalnu	93	NDPF 26	97.733	PWC	
	119	Sharlal	94	NDPF 27	146.1247	PWC	
	120 Palasi Jal		95	NDPF 28	1181.8659	PWC	

1	2 3		4	5	6	7
Rampur	121	Punar	160	90	125.14	D/K PB-II
	122	Munish East	161	91	110.56	D/K PB-III
	123	Munish East	162	92	200.47	D/K PB-II
	124	Munish North	163	93	28.35	D/K PB-II
	125	Munish North	164	94	274.18	D/K PB-I
	126	Langri Ka	165	95	149.85	PWC
Bahli	127	Gandla Seri	166	96	132.84	CWC PB-IV
	128	Agadhar	167	97	157.14	CWC PB-III
	129	Karphala	168	98	39.69	CWC PB-I
Rampur	130	Kareri	169	99	56.29	CWC PB-I
•	131	Kareri	170	100	128.79	CWC PB-II
	132	Darshal	171	101	77.76	CWC PB-I
	133	Darshal	172	102	58.72	CWC PB-II
Bahli	134	Challali	173	103	102.06	CWC PB-IV
	135	Rajpura	174	104	143.37	CWC PB-III
	136	Kateri	175	105	29.97	CWC PB-I
	137	Khanoutu	176	106	60.75	CWC PB-IV
	138	Kuban	177	107	57.51	CWC PB-IV
	139	Kuban	178	108	42.52	CWC PB-I
Rampur	140	Sanathali	179 a	109 a	114.21	D/K PB-III
	141	Sanathali	179 b	109 b	77.76	D/K PB-I
	142	Tauni	180 a	110 a	68.44	CWC PB-I
	143	Tauni	180 a1	110 b	121.5	D/K PB-II
	144	Banauli	180 b1	110 c	36.45	D/K PB-II
	145	Banauli	180 b2	110 d	34.02	F/S PB-II
	146	Pashada	180 c 1	110e	54.67	CWC PB-III
	147	Pashada	180 c 2	110 f	77.76	D/K PB-III
	148	Baltidhar	180 d 1	110 g	40.5	CWC PB-III
	149	Baltidhar	180 d 2	110 h	53.46	D/K PB-I
	150	Barauni Upper	181 a	111 a	84.64	CWC PB-II
	151	Barauni Lower	181 b	111 b	132.84	CWC PB-I
Rampur	152	Sanathali	1 b	NDPF 29	160.5427	D/K PB-III
	153	Brauni	3	NDPF 30	59.713	CWC PB-I
	154	Khanewli	70	NDPF 31	139.909	CWC PB-II
	155	Talai Dhar	71	NDPF 32	121.2809	D/K PB-IV
	156	Nirsu	72	NDPF 33	20.7103	CWC PB-IV
	157	Kareri	75	NDPF 34	130.2665	OakWC
	158	Rasandli	78	NDPF 35	30.8484	CWC PB-II
	159	Rajpura	79	NDPF 36	24.0951	CWC PB-II
	160	Masheli	80	NDPF 37	19.2179	CWC PB-IV
	161	Kumsu	81	NDPF 38	14.5339	CWC PB-III
	162	Hans Bishan	96	NDPF 39	4689.22	PWC
	163	Gatghor	97	NDPF 40	289.9309	PWC

1	2	3	4	5	6	7
	164	Kasha	98	NDPF 41	422.6344	PWC
	165	Pat	99	NDPF 42	289.2541	PWC
	166	Kandi	100	NDPF 43	42.4351	D/K PB-IV
	167	Jogni Upper	101	NDPF 44	45.5751	CWC PB-I
	168	Jogni Lower	102	NDPF 45	42.1317	CWC PB-IV
	169	Mataina	103	NDPF 46	17.7115	CWC PB-III
	170	Munish Bahli	104	NDPF 47	117.7409	D/K PB-III
	171	Thala	105	NDPF 48	36.3214	F/S PB-IV
	172	Shareri	106	NDPF 49	149.6082	F/S PB-IV
	173	Daran Ghati	107	NDPF 50	57.3165	PWC
	174	Saraikoti	108	NDPF 51	110.4274	PWC
	175	Chiksa	109	NDPF 52	249.4831	D/K PB-II
	176	Deothi	110	NDPF 53	12.4112	CWC PB-III
	177	Keem	111	NDPF 54	61.3601	D/K PB-II
	178	Anu	112	NDPF 55	13.9142	CWC PB-II
	179	Darshal	113	NDPF 56	217.3497	CWC PB-IV
	180	Suki gad	114	NDPF 57	317.1051	CWC PB-II
	181	Shikkaridhar	115	NDPF 58	179.4679	D/K PB-IV
	182	Ruwan	116	NDPF 59	28.1999	CWC PB-III
	183	Nogli	117	NDPF 60	49.4191	OakWC
	184	Shingla	118	NDPF 61	13.0313	CWC PB-III
	185	Tauni	Tauni	NDPF 62	227.2908	PWC
Sarahan	186	Saraikot	182 a	112 a	70.47	F/S PB-III
	187	Gaura	182 b	112 b	113.8	F/S PB-II
	188	Phanoti	182 c	112 c	170.1	D/K PB-III
	189	Jamukurai	183	113	153.49	F/S PB-I
	190	Maghara	184	114	126.76	D/K PB-IV
	191	Daran	185 h	115	4.86	PL/WC
	192	Manglad	186	116	32.4	PWC
	193	Bari	187	117	78.97	F/S PB-III
	194	Bhagawat	188	118	4.86	PL/WC
	195	Kundlu Chanda	189	119	319.14	F/S PB-IV
	196	Mule dhar	190 a	120 a	38.88	D/K PB-IV
	197	Kinpheui	190 b	120 b	135.27	D/K PB-III
	198	Koot	190 с	120 c	69.66	D/K PB-IV
	199	Khiruwa	190 d	120 d	122.31	D/K PB-II
	200	Thekwa	190 e	120 e	81.4	D/K PB-III
	201	Kheuncha	191 a	121 a	60.34	D/K PB-III
	202	Koot	191b	121 b	42.52	F/S PB-III
	203	Deora	191 с	121 c	187.51	F/S PB-II
	204	Hularuding	191 d	121 d	203.31	D/K PB-II
	205	Rupinsuglig	191 e 1	121 e	44.55	D/K PB-II
	206	Rupinsuglig	191 e2	121 f	127.57	F/S PB-III

1	2	3	4	5	6	7
	207	Khutani	191 f	121 g	78.97	D/K PB-IV
	208	Kilpa	192	122	83.83	D/K PB-III
	209	Ruwancha E.	193 a	123 a	42.93	D/K PB-II
	210	Ruwancha W.	193 b	123 b	86.67	D/K PB-III
	211	Chalandi Dhar	194	124	56.7	D/K PB-IV
	212	Chalandi Pat	195	125	98.41	D/K PB-I
	213	Kuimori Gad	196	126	49.41	D/K PB-III
	214	Kuimori Dhar	197	127	53.46	D/K PB-IV
	215	Patni Punj	198 a	128 a	65.61	D/K PB-III
	216	Bajadhar	198 b	128 b	88.29	D/K PB-III
	217	Jaghori	198 с	128 c	68.85	D/K PB-I
	218	Karai	199	129	69.66	D/K PB-II
	219	Tikkar	200	130	96.79	D/K PB-II
	220	Kundken	201	131	30.78	D/K PB-III
	221	Sadholi Gad	202	132	93.55	D/K PB-IV
	222	Nanti Gad	203	133	57.51	D/K PB-I
	223	Sagori Dhar	204 a	134 a	76.14	PWC
	224	Segta Dhar	204 b	134 b	57.51	PWC
	225	Katbari	205	135	117.04	F/S PB-II
	226	Saranga N.	206	136	106.11	D/K PB-I
	227	saranga S.	207	137	65.2	D/K PB-II
	228	Phancha	208	138	71.68	D/K PB-III
	229	Dharapori	209 a	139 a	49.41	D/K PB-III
	230	Boihaoi Dhar	209 b	139 b	78.16	D/K PB-III
	231	Kandri	210 a	140 a	99.22	F/S PB-II
	232	Bhujri	210 b	140 b	121.09	D/K PB-I
	233	Gamoghati	210 с	140 c	43.33	F/S PB-II
	234	Dorigad	211	141	11.34	D/K PB-IV
	235	Sarpara	212 a	142 a	122.71	D/K PB-II
	236	Margot	212 b	142 b	81	F/S PB-I
	237	Sechi gad	212 c	142 c	129.19	F/S PB-II
	238	Imarifall	213 a	143 a	110.97	PWC
	239	Manjkalan	213 b	143 b	90.72	PWC
	240	Chechi	214	144	147.01	D/K PB-II
	241	Suga	215 a	145 a	39.69	PWC
	242	Duhnku	215 b	145 b	89.1	D/K PB-IV
	243	Sugachho	215 с	145 с	123.52	D/K PB-IV
	244	Selti	215 d	145 d	95.17	PWC
Sarahan	245	Ramagad	4	NDPF 63	395.7387	F/S PB-I
	246	Gauni	5	NDPF 64	301.5065	D/K PB-I
		Kundla Chunda	_	NDPF 65		avv.a == ===
	247	I	6 a	NDDE 66	154.1058	CWC PB-IV
	248	Kundla Chunda	6 b	NDPF 66	71.0296	D/K PB-II

1	2	3	4	5	6	7
	249	Kundla Chunda		NDPF 67		
		III	6 c		191.7112	F/S PB-IV
	250	Kheucha	7	NDPF 68	495.6117	F/S PB-III
	251	Koot	8	NDPF 69	763.8354	F/S PB-III
	252	Deowara	9	NDPF 70	599.6004	F/S PB-I
	253	Hularuding I	10	NDPF 71	333.3371	F/S PB-IV
	254	Hularuding II	11	NDPF 72	39.1333	D/K PB-IV
	255	Rupinsuglig	12	NDPF 73	395.353	F/S PB-IV
	256	Karai	14	NDPF 74	162.4419	D/K PB-IV
	257	Gamoghati	16 a	NDPF 75	24.8201	D/K PB-II
	258	Sharan gad S	17	NDPF 76	112.0018	F/S PB-II
	259	Sharan gad N	18	NDPF 77	766.9464	F/S PB-II
	260	Phancha II	19	NDPF 78	46.5906	F/S PB-I
	261	Bohiyadhar	20	NDPF 79	235.1642	F/S PB-III
	262	Bhujri	21	NDPF 80	87.1723	F/S PB-III
	263	Sarpara	22	NDPF 81	89.6817	F/S PB-III
	264	Kuimoridhar	Kuimoridhar	NDPF 82	188.9878	PWC
	265	Jami thach	Jami thach	NDPF 83	72.9336	PWC

Appendix-VI

Range wis	e area si	tatement of forest (shift in hac. and allotme	_		_	t numbers) area
		b) List of Under				
Range	Sr. No.	Name of forest	Old UPF No.s.	New UPF No.	Area in Ha.	Allotment
1	2	3	4	5	6	7
Nankhari	1	Chabair	23	1	52.65	PL/WC
	2	Ropari	24	2	52.65	PL/WC
	3	Narola	25	3	52.65	PL/WC
	4	Samnu	26	4	38.47	D/K PB-IV
	5	Tutu	27	5	19.44	D/K PB-IV
	6	Nagadhar	28	6	129.6	D/K PB-II
	7	Panel	29	7	16.2	D/K PB-IV
	8	Banoga	30	8	12.15	D/K PB-III
	9	Banola	31	9	24.3	CWC PB-IV
	10	Balani	32	10	40.5	CWC PB-III
	11	Dalahu	33	11	28.35	CWC PB-III
	12	Batanal	34	12	24.3	CWC PB-IV
	13	Kandal	35	13	48.6	CWC PB-IV
	14	Trena	36	14	52.65	CWC PB-III
	15	Lelhan	37	15	104.08	D/K PB-II
	16	Santhal	38	16	115.83	CWC PB-III
	17	Kaleli	39	17	20.65	CWC PB-II
	18	Paradhar	40	18	51.84	CWC PB-I
	19	Kungal	41	19	30.78	D/K PB-I
	20	Bai Bahli	42	20	12.96	D/K PB-I
	21	Tangri	43	21	36.04	D/K PB-III
	22	Sandh	157	22	19.84	D/K PB-I
	23	Jedharmila	158	23	14.17	D/K PB-II
	24	Chachi	159	24	40.5	CWC PB-I
	25	Bamnoli	160	25	12.15	D/K PB-II
	26	Dharja	161	26	9.72	D/K PB-II
	27	Gahan	162	27	21.87	D/K PB-II
	28	Jahu	163	28	12.96	D/K PB-IV
	29	Peojna	164	29	16.2	D/K PB-II
	30	Gutru	165	30	10.12	CWC PB-I
	31	Chitrali	166	31	16.2	OakWC
	32	Baroli	167	32	4.05	D/K PB-II
	33	Chebri	168	33	16.2	CWC PB-I
	34	jalthani	169	34	41.31	CWC PB-I
	35	Nangalni	170	35	16.2	CWC PB-I

1	2	3	4	5	6	7
	37	Latehri	172	37	16.2	CWC PB-I
Bahli	38	Sridhar	44	38	47.79	D/K PB-IV
	39	Khamadi	45	39	12.15	D/K PB-IV
	40	Dansa	46	40	52.24	CWC PB-I
	41	Kandrer	47	41	35.64	D/K PB-I
	42	Surd	48	42	12.96	D/K PB-III
	43	Erli	50	43	10.93	D/K PB-IV
	44	Nathal Dhar	51	44	81	CWC PB-III
	45	Beunthal	52	45	45.36	D/K PB-I
	46	Ghat	53	46	19.84	D/K PB-III
	47	Majheoti	54	47	81	CWC PB-III
	48	Paicha	55	48	56.7	CWC PB-IV
	49	Pei	56	49	50.62	CWC PB-IV
	50	Sangral	57 a	50	37.66	D/K PB-II
	51	Boltidhar	77	51	81	D/K PB-III
	52	Majholi	87	52	121.5	OakWC
Rampur	53	Sanathali	1 a	53	157.95	Pl/WC
	54	Tauni	2	54	230.04	Pl/WC
	55	Sangri Kopta	73	55	236.92	OakWC
	56	Kamlahu	74	56	225.18	OakWC
Sarahan	57 kalaindidhar		13 a	57 a	72.9	D/K PB-II
	58	kalaindidhar	13 b	57 b	92.34	F/S PB-I
	59	Kandri	15	58	98.01	D/K PB-I
	60	Gamoghati	16 b	59	14.17	F/S PB-II

	ABSTRACT														
Name of Range	Range of DPFs			Area	Total DPF	Total	No. of UPFs	Area	Total No. of Forests	Area					
Nankhari	60	5444.27	0	0	60	5444.2700	37	1252.63	97	6696.9000					
Bahli	41	7162.36	28	2418.3401	69	9580.7001	15	746.39	84	10327.0901					
Rampur	22	2106.36	34	8400.4573	56	10506.8173	4	850.09	60	11356.9073					
Sarahan	59	5234.90 21 5527.7031 8		80	10762.6031	4	277.42	84	11040.0231						
Total	182	19947.89	83	16346.5005	265	36294.3905	60	3126.53	325	39420.9205					

Appendix-VII

																		CHUIA VI	
					Gene	eral Abstr	act show	ing the al	llotment	of Forests	s to vari								
Forest		Deo	/Kail working	Circle			Fir/Sp	ruce working	Circle			C	hil working (Circle		Protection	Oak	Plantation	G. Total
category -	PBI	PBII	PBIII	PBIV	Total	PBI	PBII	PBIII	PBIV	Total	PBI	PBII	PBIII	PBIV	Total	working Circle	working circle	working Circle	
<u> </u>				I			I.	l .	Nankhari	Range	l	I.			I				l
DPF	874.76	340.60	618.40	770.70	2604.4600	1597.6900	459.6700	254.7400	487.2100	2799.3100	0	0	40.5000	0	40.5000	0	0	0	5444.27
Listed UPF	63.58	332.09	48.19	87.07	530.9300	0	0	0	0	0.0000	140.5300	72.4900	237.3300	97.2000	547.5500	0	16.20	157.95	1252.63
Total	938.34	672.69	666.59	857.77	3135.3900	1597.6900	459.6700	254.7400	487.2100	2799.3100	140.5300	72.4900	277.8300	97.2000	588.0500	0	16.2000	157.95	6696.90
L				I			I.	l.	Bahli Ra	inge	l	I.			· L		l		l
DPF	313.9174	82.7923	408.3722	301.7862	1106.8681	670.2600	1108.8800	1826.5500	1191.0202	4796.7102	301.8235	0	439.1308	399.9691	1140.9234	2442.0367	94.1617	0	9580.7001
Listed UPF	81.00	0	113.8000	70.87	265.6700	0	0	0	0	0	52.2400	0	162.0000	107.3200	321.5600	0	159.1600	0	746.39
Total	394.9174	82.7923	522.1722	372.6562	1372.5381	670.2600	1108.8800	1826.5500	1191.0202	4796.7102	354.0635	0	601.1308	507.2891	1462.4834	2442.0367	253.3217	0	10327.0901
								l .	Rampur I	Range					1	ı			
DPF	405.40	822.7532	580.8136	343.1839	2152.1507	0	34.0200	0	185.9296	219.9496	440.6181	798.0218	181.0578	299.4096	1719.1073	6235.9241	179.6856	0	10506.8173
Listed UPF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	462.10	387.99	850.0900
Total	405.4000	822.7532	580.8136	343.1839	2152.1507	0	34.0200	0	185.9296	219.9496	440.6181	798.0218	181.0578	299.4096	1719.1073	6235.9241	641.7856	387.99	11356.9073
								l .	Sarahan I	Range					1	ı			
DPF	753.4765	1010.3197	1050.95	943.5152	3758.2614	1276.4197	1569.0382	1990.9953	1239.5413	6075.9945	0	0	0	154.1058	154.1058	764.5214		9.72	10762.6031
Listed UPF	98.01	72.90	0	0	170.91	92.34	14.1700	0	0	106.5100	0	0	0	0	0	0		0	277.42
Total	851.4865	1083.2197	1050.95	943.5152	3929.1714	1368.7597	1583.2082	1990.9953	1239.5413	6182.5045	0	0	0	154.1058	154.1058	764.5214	0	9.72	11040.0231
Total DPF	2347.5539	2256.4652	2658.5358	2359.1853	9621.7402	3544.3697	3171.6082	4072.2853	3103.7011	13891.9643	742.4416	798.0218	660.6886	853.4845	3054.6365	9442.4822	273.8473	9.72	36294.3905
Total Listed UPF	242.59	404.99	161.99	157.94	967.51	92.34	14.1700	0	0	106.51	192.7700	72.4900	399.3300	204.52	869.11		637.4600	545.94	3126.5300
G.Total	2590.1439	2661.4552	2820.5258	2517.1253	10589.2502	3636.7097	3185.7782	4072.2853	3103.7011	13998.4743	935.2116	870.5118	1060.0186	1058.0045	3923.7465	9442.4822	911.3073	555.66	39420.9205

							A	Appen	dix- VI	II								
					Enui	meration	Resu	lt of (Chil W	orking	g Circ	le PB-I						
Sr. No.	Name of Range	Name of Block	Name of Beat	Name of Forest	Area in Ha.	Species	10- 20	20- 30	30-40	40-50	50- 60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
110.	Kange	DIOCK	Deat	Forest	11a.		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Rampur	Rampur	Pashada	C-111 b Browni Lower	132.84	Chil	4007	1696	493	278	140	61	29	11	6	1	6722	
						Volume in m3	356.6	556.3	382.08	410.88	345.8	231.129	158.514	82.841	60.078	12.938		2597.17
						Kail	82	92	44	19	4	2	0	0	0	0	243	
						Volume in m3	12.46	38.92	42.416	33.725	11.42	8.41	0	0	0	0		147.351
						Ban	5	28	51	27	18	12	7	3	0	1	152	
						Volume in m3	0.67	8.764	33.507	32.427	35.53	35.952	29.995	17.571	0	9.894		204.312
						Other B.L. Species	17	33	34	17	6	3	2	1	1	0	114	
						Volume in m3	1.598	9.702	24.072	22.712	13.06	9.696	9	5.982	7.678	0		103.502
				Total	132.84		4111	1849	622	341	168	78	38	15	7	2	7231	3052.34
2	Rampur	Deothi	Darshal	C-101 Darshal	77.76	Chil	829	1862	2537	2717	1787	1027	713	147	108	20	11747	
						Volume in m3	73.78	610.7	1966.2	4015.7	4414	3891.3	3897.26	1107.1	1081.4	258.76		21316.1
						Other B.L. Species	82	56	26	27	21	17	11	9	10	6	265	
						Volume in m3	7.708	16.46	18.408	36.072	45.72	54.944	49.5	53.838	76.78	57.522		416.953

	Total				77.76		911	1918	2563	2744	1808	1044	724	156	118	26	12012	21733
3	Bahli	Taklech	Taklech	NDPF-22 Taklech	5.9545	Chil	15	22	156	93	85	65	58	2	0	0	496	
						Volume in m3	1.335	7.216	120.9	137.45	210	246.285	317.028	15.062	0	0		1055.23
						Ban	0	0	22	5	7	5	7	0	0	0	46	
						Volume in m3	0	0	14.454	6.005	13.82	14.98	29.995	0	0	0		79.252

								Appen	dix- VIII									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	Total						15	22	178	98	92	70	65	2	0	0	542	1134.48
4	Nankhari	Nankhari	Bagalti	UPF-C-35 Nigalni	16.2	Deodar	65	37	0	0	0	0	0	0	0	0	102	
						Volume in m3	11.57	17.98	0	0	0	0	0	0	0	0		29.552
						Kail	144	67	32	23	0	0	0	0	0	0	266	
						Volume in m3	21.89	28.34	30.848	40.825	0	0	0	0	0	0		121.902
						Chil	261	67	21	431	110	16	65	41	7	4	1023	
						Volume in m3	23.23	21.98	16.275	637.02	271.7	60.624	355.29	308.77	70.091	51.752		1816.73
						Other B.L. Species	27	18	15	4	3	2	0	0	0	0	69	
						Volume in m3	2.538	5.292	10.62	5.344	6.531	6.464	0	0	0	0		36.789
	Total						497	189	68	458	113	18	65	41	7	4	1460	2004.97
5	Nankhari	Nankhari	Bagalti	UPF-C-33 Chebri	16.2	Deodar	232	73	1	5	3	2	2	0	0	0	318	

					Volume in m3	41.3	35.48	1.039	9.12	8.565	8.252	11.276	0	0	0		115.026
					Kail	184	57	22	22	5	1	1	0	0	0	292	
					Volume in m3	27.97	24.11	21.208	39.05	14.28	4.205	5.824	0	0	0		136.641
					Chil	274	81	19	16	3	1	2	3	1	0	400	
					Volume in m3	24.39	26.57	14.725	23.648	7.41	3.789	10.932	22.593	10.013	0		144.064
					Mohru	7	0	0	0	0	0	0	0	0	0	7	
					Volume in m3	0.938	0	0	0	0	0	0	0	0	0		0.938
Total			16.2		697	211	42	43	11	4	5	3	1	0	1017	396.669	
G. Total			248.95		6231	4189	3473	3684	2192	1214	897	217	133	32	22262	28321.5	

	Appendix- VIII														
	General Abstract of Chil Working Circle Species wise No. & volume of CWC PB-I Area														
Sr. No.	Total Area enumerated (in Ha.)	Species	10-20	20-30	30-40	40-50	50- 60	60- 70	70-80	80-90	90- 100	100 over	Total		
			V	IV	III	IIA	IIB	IA	IB	IC	ID	IE			
1	2	3	4	5	6	7	8	9	10	11	12	13	14		
	248.955	Chil	5386	3728	3226	3535	2125	1170	867	204	122	25	20388		
1		Volume in m3	479.35	1222.78	2500.15	5224.73	5249	4433	4739	1536.3	1222	323.45	26929.3		
2		Deodar	297	110	1	5	3	2	2	0	0	0	420		

		Volume in m3	52.866	53.46	1.039	9.12	8.565	8.252	11.276	0	0	0	144.578
		Kail	410	216	98	64	9	3	1	0	0	0	801
3		Volume in m3	62.32	91.368	94.472	113.6	25.7	12.62	5.824	0	0	0	405.894
		Ban	5	28	73	32	25	17	14	3	0	1	198
4		Volume in m3	0.67	8.764	47.961	38.432	49.35	50.93	59.99	17.571	0	9.894	283.564
		Mohru	7	0	0	0	0	0	0	0	0	0	7
5		Volume in m3	0.938	0	0	0	0	0	0	0	0	0	0.938
6		Other B.L Species	126	107	75	48	30	22	13	10	11	6	448
		Volume in m3	11.844	31.458	53.1	64.128	65.31	71.1	58.5	59.82	84.46	57.522	557.244
	Total Trees =	:	5927	4079	3472	3679	2189	1212	895	217	133	32	22262
Total volume =		607.99	1407.83	2696.72	5450.01	5398	4576	4874.6	1613.7	1306	390.87	28321.5	

	Appendix- VIII																	
	Enumeration Result of Chil Working Circle PB-II																	
Sr. No.	Name of Range	Name of	Name of	Name of Forest	Area in Ha.	Species	10- 20	20- 30	30-40	40-50	50- 60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
No.		Block	Beat				V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		ļ

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Sholi	Sholi	UPF-C-17 Karela	20.65	Chil	151	161	76	211	121	25	13	24	3	0	785	
						Volume in m3	13.44	52.81	58.9	311.86	298.9	94.725	71.058	180.74	30.039	0		1112.44
						Deodar	885	290	0	0	0	0	0	0	0	0	1175	
						Volume in m3	157.5	140.9	0	0	0	0	0	0	0	0		298.47
						Kail	350	210	45	0	0	0	0	0	0	0	605	
						Volume in m3	53.2	88.83	43.38	0	0	0	0	0	0	0		185.41
		Total			20.65		1386	661	121	211	121	25	13	24	3	0	2565	1596.32
2	Rampur	Deothi	Deothi	C-100 Kareri	128.79	Chil	2150	1799	2600	2882	3136	1560	953	27	10	3	15120	
						Volume in m3	191.4	590.1	2015	4259.6	7746	5910.84	5209.1	203.34	100.13	38.814		26264.2
		Total			128.79		2150	1799	2600	2882	3136	1560	953	27	10	3	15120	26264.2
3	Nankhari	Nankhari	Kungal Munder	UPF-C-18 Paradhar	51.84	Chil	1500	900	1242	506	247	169	113	58	28	16	4779	
						Volume in m3	133.5	295.2	962.55	747.87	610.1	640.341	617.658	436.8	280.36	207.008		4931.38
		Total			51.84		1500	900	1242	506	247	169	113	58	28	16	4779	4931.38
				G. Total	201.28		5036	3360	3963	3599	3504	1754	1079	109	41	19	22464	32791.9

					Appe	endix- VIII							
	T	General A	Abstract of	Chil Workir	g Circle S	Species wi	se No. 8	& volun	ne of CW	/C PB-II	Area		
Sr. No.	Total Area enumerated (in Ha.)	Species	10-20	20-30	30-40	40-50	50- 60	60- 70	70-80	80-90	90- 100	100 over	Total
	(III I Ia.)		\mathbf{V}	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
		Chil	3801	2860	3918	3599	3504	1754	1079	109	41	19	20684
1		Volume in m3	338.29	938.08	3036.45	5319.32	8655	6646	5897.8	820.88	410.5	245.82	32308
		Deodar	885	290	0	0	0	0	0	0	0	0	1175
2	201.28	Volume in m3	157.53	140.94	0	0	0	0	0	0	0	0	298.47
		Kail	350	210	45	0	0	0	0	0	0	0	605
3		Volume in m3	53.2	88.83	43.38	0	0	0	0	0	0	0	185.41
	Total Trees	S =	5036	3360	3963	3599	3504	1754	1079	109	41	19	22464
	Total volum	ie =	549.02	1167.9	3079.8	5319.32	8655	6646	5898	820.9	410.5	245.82	32792

								Appen	dix- VIII									
						Enumera	tion Res	sult of C	hil Work	ing Circl	le PB-II	[
Sr. No.	Name of	Name of Block	Name of Beat	Name of Forest	Area in Ha.	Species	10- 20	20- 30	30-40	40-50	50- 60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
110.	Range	DIOCK	Deat	rorest	па.		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Nankhari	Bagalti	C-29 a (C- 97 (a) DPF Bhadral old no.)	40.5	Chil	2025	1457	786	538	327	55	43	48	21	0	5300	
						Volume in m3	180.2	477.9	609.15	795.16	807.7	208.395	235.038	361.49	210.27	0		3885.32
						Ban	827	571	386	221	171	25	20	18	12	0	2251	
						Volume in m3	110.8	178.7	253.6	265.42	337.6	75	86	105	93	0		1504.82
						Other B.L. Species	657	409	311	213	160	17	11	15	7	0	1800	
						Volume in m3	61.76	120.2	220.19	284.57	348.3	54.944	49.5	89.73	53.746	0		1283
		Total			40.5		3509	2437	1483	972	658	97	74	81	40	0	9351	6673.14

2	Bahli	Taklech	Theda	NDPF C- 16 (DPF- 82 Chalari old no.)	16.0011	Chil	253	174	356	446	436	206	103	78	0	0	2052	
						Volume in m3	22.52	57.07	275.9	659.19	1077	780.534	562.998	587.42	0	0		4022.55
						Other B.L. Species	18	23	0	0	0	0	0	0	0	0	41	
						Volume in m3	1.692	6.762	0	0	0	0	0	0	0	0		8.454
		Total			16		271	197	356	446	436	206	103	78	0	0	2093	4031
3	Rampur	Deothi	Deothi	C-53 (C- 110 Deothi old no.)	12.4112	Chil	133	83	45	38	23	17	15	8	3	0	365	
						Volume in m3	11.84	27.22	34.875	56.164	56.81	64.413	81.99	60.248	30.039	0		423.6
1	2	2	4	-	(7	8	9	10	11	12	12	1.4	15	16	17	10	10
1	2	3	4	5	6	Poplar	15	8	10 27	11 49	12 56	13 41	14 37	15 0	16 0	17 0	233	19
						Volume in m3	1.41	2.352	19.116	65.464	121.9	132.512	166.5	0	0	0	233	509.266
								Appen	dix- VIII									
		Total			12.411		148	91	72	87	79	58	52	8	3	0	598	932.866
4	Bahli	Taklech	Taklech	C-167 Agadhar	157.14	Chil	1129	2078	2304	649	96	33	7	0	0	1	6297	
						Volume in m3	100.5	681.6	1785.6	959.22	237.1	125.037	38.262	0	0	12.938		3940.24
						Kail	2	0	0	0	0	0	0	0	0	0	2	
						Volume in m3	0.304	0	0	0	0	0	0	0	0	0		0.304

				Ban	1	5	2	1	3	0	0	0	0	0	12	
				Volume in m3	0.134	1.565	1.314	1.201	5.922	0	0	0	0	0		10.136
				Brass	11	14	3	0	0	0	0	0	0	0	28	
				Volume in m3	1.034	4.116	2.124	0	0	0	0	0	0	0		7.274
				Other B.L. Species	74	77	52	26	17	5	4	2	1	2	260	
				Volume in m3	6.956	22.64	36.816	34.736	37.01	16.16	18	11.964	7.678	19.174		211.131
	Total		157.14		1217	2174	2361	676	116	38	11	2	1	3	6599	4169.09
	G. Tota	l	226.05		5145	4899	4272	2181	1289	399	240	169	44	3	18641	15806.1

			Appendix- VIII		
		General A	Abstract of Chil Working Circle Species wise No. 8	& volume of CWC PB-III Area	
Sr.	Total Area	Species			

No.	enumerated (in Ha.)		10-20	20-30	30-40	40-50	50- 60	60- 70	70-80	80-90	90- 100	100 over	Total
			V	IV	III	IIA	IIB	IA	IB	IC	ID	ΙE	
	226.052	Chil	3540	3792	3491	1671	882	311	168	134	24	1	14014
1		Volume in m3	315.06	1243.78	2705.53	2469.74	2179	1178	918.29	1009.2	240.3	12.94	12271.7
2		Kail	2	0	0	0	0	0	0	0	0	0	2
		Volume in m3	0.3	0	0	0	0	0	0	0	0	0	0.3
		Ban	828	576	388	222	174	25	20	18	12	0	2263
3		Volume in m3	110.95	180.29	254.92	266.62	343.5	74.9	85.7	105.43	92.68	0	1514.96
		Poplar	15	8	27	49	56	41	37	0	0	0	233
4		Volume in m3	1.41	2.35	19.12	65.46	121.9	132.5	166.5	0	0	0	509.27
5		Brass	11	14	3	0	0	0	0	0	0	0	28
		Volume in m3	1.03	4.12	2.12	0	0	0	0	0	0	0	7.27
6		Other B.L Species	749	509	363	239	177	22	15	17	8	2	2101
		Volume in m3	70.41	149.65	257	319.3	385.3	71.1	67.5	101.69	61.42	19.17	1502.59
	Total Trees	S =	5145	4899	4272	2181	1289	399	240	169	44	3	18641
	Total volume =		499.17	1580.18	3238.69	3121.13	3029	1457	1238	1216.3	394.4	32.11	15806.1

								Appen	dix- VIII									
						Enumerat	ion Res	sult of (Chil Wor	king Cir	cle PB-	IV						
Sr. No.	Name of	Name of	Name of Beat	Name of Forest	Area in Ha.	Species	10- 20	20- 30	30-40	40-50	50- 60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
NO.	Range	Block	Deal	Forest	ш па.		V	IV	Ш	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Bahli	Taklech	Theda	C-106 Khanoatu	60.75	Chil	430	838	469	329	116	43	15	11	4	0	2255	
						Volume in m3	38.27	274.9	363.48	486.26	286.5	162.927	81.99	82.841	40.052	0		1817.2
						Deodar	12	5	0	1	0	0	0	0	0	0	18	
						Volume in m3	2.136	2.43	0	1.824	0	0	0	0	0	0		6.39
						Kail	84	33	7	2	4	0	3	0	1	0	134	
						Volume in m3	12.77	13.96	6.748	3.55	11.42	0	17.472	0	9.872	0		75.789
						Spruce	0	0	4	1	1	1	1	0	2	0	10	
						Volume in m3	0	0	4.16	1.969	3.217	4.784	6.669	0	22.788	0		43.587
						Ban	781	892	532	406	223	130	226	134	55	96	3475	
						Volume in m3	104.7	279.2	349.52	487.61	440.2	389.48	968.41	784.84	424.77	949.824		5178.5
						Brass	404	296	118	56	15	7	6	3	2	3	910	
						Volume in m3	37.98	87.02	83.544	74.816	32.66	22.624	27	17.946	15.356	28.761		427.702
						Other B.L. Species	1079	648	197	88	24	10	12	8	7	4	2077	

						Volume in m3	101.4	190.5	139.48	117.57	52.25	32.32	54	47.856	53.746	38.348		827.5
		Total			60.75		2790	2712	1327	883	383	191	263	156	71	103	8879	8376.67
2	Bahli	Taklech	Taklech	C-107 Kuban	57.51	Chil	1005	462	199	178	190	140	68	19	3	2	2266	
						Volume in m3	89.45	151.5	154.23	263.08	469.3	530.46	371.688	143.09	30.039	25.876		2228.74
						Kail	3	3	0	0	1	1	0	0	0	0	8	
						Volume in m3	0.456	1.269	0	0	2.855	4.205	0	0	0	0		8.785
						Deodar	3	2	0	0	0	0	0	0	0	0	5	
						Volume in m3	0.534	0.972	0	0	0	0	0	0	0	0		1.506
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Ban	24	23	30	27	9	8	0	2	0	0	123	
						Volume in m3	3.216	7.199	19.71	32.427	17.77	23.968	0	11.714	0	0		116
						Brass	16	15	10	3	0	0	0	0	0	0	44	
						Volume in m3	1.504	4.41	7.08	4.008	0	0	0	0	0	0		17.002
						Other B.L. Species	327	210	89	37	12	8	4	2	0	0	689	
						Volume in m3	30.74	61.74	63.012	49.432	26.12	25.856	18	11.964	0	0		286.866
		Total			57.51		1378	715	328	245	212	157	72	23	3	2	3135	2658.9
3	Bahli	Surad	Beaunthal	UF-C-48 Paucha	56.7	Chil	102	67	18	0	0	0	0	0	0	0	187	
						Volume in m3	9.078	21.98	13.95	0	0	0	0	0	0	0		45.004
						Kail	123	149	105	12	3	1	0	0	0	0	393	
						Volume in m3	18.7	63.03	101	21	8.565	4.205	0	0	0	0		217.013

						Other B.L. Species	5	6	1	1	0	0	0	0	0	0	13	
						Volume in m3	0.47	1.764	0.708	1.336	0	0	0	0	0	0		4.278
		Total			56.7		230	222	124	13	3	1	0	0	0	0	593	266.295
4	Rampur	Nogli	Nogli	NDPF-C- 37 Masheli	19.218	Shisham	27	3	1	0	1	1	0	0	0	0	33	
						Volume in m3	2.538	0.882	0.708	0	2	3	0	0	0	0		9.537
		Total			19.218		27	3	1	0	1	1	0	0	0	0	33	9.537
5	Rampur	Deothi	Munish	NDPF-C- 45 Lower Jogani	42.132	Chil	3100	2306	1811	383	192	86	60	35	20	8	8001	
						Volume in m3	275.9	756.4	1403.5	566.07	474.2	325.854	327.96	263.59	200.26	103.504		4697.27
		Total	1	1	42.132		3100	2306	1811	383	192	86	60	35	20	8	8001	4697.27
								Appen	dix- VIII									1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
6	Bahli	Bahli	Bahli	NDPF C- 14 Sobli	46.809	Chil	945	1844	294	0	0	0	0	0	0	0	3083	
						Volume in m3	84.11	604.8	227.85	0	0	0	0	0	0	0	_	916.787
		Total	-	-	46.809	_	945	1844	294	0	0	0	0	0	0	0	3083	916.787
		G. Tota	ıl		283.12		8470	7802	3885	1524	791	436	395	214	94	113	23724	16925.5

			Appendix- VIII
		General A	Abstract of Chil Working Circle Species wise No. & volume of CWC PB-IV Area
Sr.	Total Area	Species	

No.	enumerated (in Ha.)		10-20	20-30	30-40	40-50	50- 60	60- 70	70-80	80-90	90- 100	100 over	Total
			V	IV	Ш	IIA	IIB	IA	IB	IC	ID	ΙE	
	283.119	Deodar	15	7	0	1	0	0	0	0	0	0	23
1		Volume in m3	2.67	3.402	0	1.824	0	0	0	0	0	0	7.896
		Kail	210	185	112	14	8	2	3	0	1	0	535
2		Volume in m3	31.92	78.255	107.968	24.85	22.84	8.41	17.472	0	9.872	0	301.587
		Spruce	0	0	4	1	1	1	1	0	2	0	10
3		Volume in m3	0	0	4.16	1.969	3.217	4.784	6.669	0	22.79	0	43.587
		Chil	5582	5517	2791	890	498	269	143	65	27	10	15792
4		Volume in m3	496.8	1809.58	2163.03	1315.42	1230	1019	781.64	489.52	270.4	129.38	9705
		Ban	805	915	562	433	232	138	226	136	55	96	3598
5		Volume in m3	107.87	286.395	369.234	520.033	458	413.4	968.41	796.55	424.8	949.824	5294.5
		Brass	420	311	128	59	15	7	6	3	2	3	954
6		Volume in m3	39.48	91.434	90.624	78.824	32.66	22.62	27	17.946	15.36	28.761	444.704
		Shisham	27	3	1	0	1	1	0	0	0	0	33
7		Volume in m3	2.54	0.88	0.71	0	2.18	3.23	0	0	0	0	9.537
8		Other B.L. Species	1411	864	287	126	36	18	16	10	7	4	2779
		Volume in m3	132.63	254.02	203.2	168.34	78.37	58.18	72	59.82	53.75	38.35	1118.64
	Total Trees	S =	8470	7802	3885	1524	791	436	395	214	94	113	23724
	Total volum	ne =	813.91	2523.96	2938.92	2111.26	1827	1530	1873.2	1363.8	796.9	1146.31	16925.5

Appendix-IX

					Enum	eration I	Result (of Deo/	Kail V	Vorking	g Circle	e PB-I						
Sr. No.	Name of	Name of	Name of Beat	Name of	Area in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
NO.	Range	Block	Беаі	Forest	па.	_	V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Gahan	Taprog	C-6 Taprog	28.75	Deodar	166	34	218	682	658	383	178	68	26	24	2437	
						Volume in m3	29.548	16.524	226.5	1243.97	1878.6	1580.26	1003.564	502.52	243.98	278.832		7004.29
						Kail	14	2	0	11	3	1	0	0	0	0	31	
						Volume in m3	2.128	0.846	0	19.525	8.565	4.205	0	0	0	0		35.269
						Spruce	4	0	0	0	0	0	0	0	0	0	4	
						Volume in m3	0.544	0	0	0	0	0	0	0	0	0		0.544
						Poplar	2	0	0	0	0	0	0	0	0	0	2	
						Volume in m3	0.188	0	0	0	0	0	0	0	0	0		0.188
		Total			28.75		186	36	218	693	661	384	178	68	26	24	2474	7040.291
2	Nankhari	Gahan	Jahu	C-2 Manikanun	66.42	Deodar	33	12	1	0	0	0	0	0	0	0	46	
						Volume in m3	5.874	5.832	1.039	0	0	0	0	0	0	0		12.745
						Kail	5964	1830	539	377	241	184	114	69	44	0	9362	
						Volume in m3	906.53	774.09	519.6	669.175	688.06	773.72	663.936	532.2	434.37	0		5961.665
						Spruce	6183	1550	341	196	117	124	126	114	64	3	8818	
						Volume in m3	840.89	664.95	354.64	385.924	376.39	593.216	840.294	1011.4	729.22	42.702		5839.627
						Fir	27	45	32	43	30	28	23	17	11	0	256	

			Volume in m3	3.672	19.305	33.28	84.667	96.51	133.952	153.387	150.82	125.33	0		800.931
			Ban	143	101	59	58	18	18	11	8	2	1	419	
			Volume in m3	19.162	31.613	38.763	69.658	35.532	54	47	47	15	10		367.987
			Khanor	5	1	6	7	10	9	12	20	14	1	85	
			Volume in m3	0.47	0.294	4.248	9.352	21.77	29.088	54	119.64	107.49	9.587		355.941

								Append	ix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Other B.L. Species	186	124	93	67	19	13	2	8	2	0	514	
						Volume in m3	17.48	36.46	65.84	89.51	41.36	42.02	9.00	47.86	15.36	0.00		364.89
		Total			66.42		12541	3663	1071	748	435	376	288	236	137	5	19500	13703.78
3	Nankhari	Gahan	Gahan	C-11 Gahan	87.48	Deodar	1149	1120	878	789	317	212	155	59	27	10	4716	
						Volume in m3	204.52	544.32	912.24	1439.14	905.04	874.712	873.89	436.01	253.37	116.18		6559.415
						Kail	9406	8108	5060	4242	1589	1138	924	508	277	193	31445	
						Volume in m3	1429.7	3429.7	4877.8	7529.55	4536.6	4785.29	5381.376	3918.2	2734.5	2374.09		40996.89
						Spruce	3002	3111	2638	2629	743	750	796	525	184	315	14693	
						Volume in m3	408.27	1334.6	2743.5	5176.5	2390.2	3588	5308.524	4657.8	2096.5	4483.71		32187.67
			·			Ban	2133	2244	1937	2003	597	528	383	275	91	43	10234	
						Volume in m3	285.82	702.37	1272.6	2405.6	1178.5	1581.89	1641.155	1610.7	702.79	425.442		11806.84

						Walnut	15	24	64	85	29	36	25	12	4	7	301	
						Volume in m3	1.185	4.8	51.2	127.5	72.5	136.8	127.5	86.4	35.6	79.1		722.585
						Other B.L. Species	2785	2756	2347	1885	682	368	406	264	158	96	11747	
						Volume in m3	261.79	810.26	1661.7	2518.36	1484.7	1189.38	1827	1579.3	1213.1	920.352		13465.9
		Total			87.48		18490	17363	12924	11633	3957	3032	2689	1643	741	664	73136	105739.3
4	Sarahan	Jaghori	Jaghori	C-128 c Jaghori	68.85	Deodar	534	619	310	200	188	143	104	76	23	18	2215	
						Volume in m3	95.052	300.83	322.09	364.8	536.74	590.018	586.352	561.64	215.83	209.124		3782.482
						Kail	350	346	269	225	242	180	120	110	43	22	1907	
						Volume in m3	53.2	146.36	259.32	399.375	690.91	756.9	698.88	848.43	424.5	270.622		4548.487
						Spruce	621	532	270	205	153	151	130	112	66	51	2291	
						Volume in m3	84.456	228.23	280.8	403.645	492.2	722.384	866.97	993.66	752	725.934		5550.286

								Append	lix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Brass	126	108	48	10	1	0	0	0	0	0	293	
						Volume in m3	11.844	31.752	33.984	13.36	2.177	0	0	0	0	0		93.117
						Jamun	36	91	79	25	10	2	1	1	0	0	245	
						Volume in m3	3.384	26.754	55.932	33.4	21.77	6.464	4.5	5.982	0	0		158.186
						Kunish	26	48	27	3	2	0	2	0	0	0	108	
						Volume in m3	2.444	14.112	19.116	4.008	4.354	0	9	0	0	0		53.034

		Poplar	25	39	32	6	1	2	2	2	0	0	109	
		Volume in m3	2.35	11.466	22.656	8.016	2.177	6.464	9	11.964	0	0		74.093
		Khanor	1	7	7	14	39	38	35	36	21	10	208	
		Volume in m3	0.094	2.058	4.956	18.704	84.903	122.816	157.5	215.35	161.24	95.87		863.491
		Walnut	1	3	3	2	4	4	4	6	3	2	32	
		Volume in m3	0.079	0.6	2.4	3	10	15.2	20.4	43.2	26.7	22.6		144.179
		Taxus	2	3	4	3	3	0	0	0	0	0	15	
		Volume in m3	0.208	0.702	1.868	2.463	3.93	0	0	0	0	0		9.171
		Mohru	2	1	0	0	1	0	0	0	0	0	4	
		Volume in m3	0.268	0.3	0	1	3	0	0	0	0	0		3.568
		Ban	0	0	1	0	0	0	0	1	0	0	2	
		Volume in m3	0	0	0.657	0	0	0	0	6	0	0		6.514
		Kainth	1	1	0	0	0	0	0	0	0	0	2	
		Volume in m3	0.094	0.294	0	-	-	0	0	0	0	0		0.388
		Tooni	0	0	0	1	0	0	0	0	0	0	1	
		Volume in m3	0	0	0	1.336	-	0	0	0	0	0		1.336
		Mapple	1	0	0	0	0	0	0	0	0	0	1	
		Volume in m3	0.117	0	0	0	0	0	0	0	0	0		0.117

								Append	lix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

						Other B.L. Species	380	396	136	27	9	1	4	1	0	0	954	
						Volume in m3	35.72	116.42	96.288	36.072	19.593	3.232	18	5.982	0	0		331.311
		Total			68.85		2106	2194	1186	721	653	521	402	345	156	103	8387	15619.76
5	Sarahan	Phancha	Phancha	UPF-C-58 Kandri	98.01	Deodar	205	78	40	68	19	30	9	0	0	0	449	
						Volume in m3	36.49	37.908	41.56	124.032	54.245	123.78	50.742	0	0	0		468.757
						Kail	91	340	661	575	614	327	211	111	20	0	2950	
						Volume in m3	13.832	143.82	637.2	1020.63	1753	1375.04	1228.864	856.14	197.44	0		7225.933
						Spruce	19	28	51	58	72	2	0	2	0	2	234	
						Volume in m3	2.584	12.012	53.04	114.202	231.62	9.568	0	17.744	0	28.468		469.242
						Chil	8	0	0	3	2	3	0	0	0	0	16	
						Volume in m3	0.712	0	0	4	5	11	0	0	0	0		21.453
						Ban	43	64	83	86	42	30	9	1	0	4	362	
						Volume in m3	5.762	20.032	54.531	103.286	82.908	89.88	38.565	5.857	0	39.576		440.397
						Mohru	18	18	10	10	5	1	3	1	1	3	70	
						Volume in m3	2.412	5.4	10	18	15	4.6	18.9	8	9.6	36.6		128.512
						Walnut	0	1	1	2	0	1	0	0	0	0	5	
						Volume in m3	0	0.2	0.8	3	0	3.8	0	0	0	0		7.8
						Mapple	0	1	1	1	1	0	0	0	0	0	4	
						Volume in m3	0	0.2	0.7	1.3	2.1	0	0	0	0	0	_	4.3
						Other B.L. Species	237	215	121	65	33	7	0	0	0	1	679	

				Volume in m3	22.278	63.21	85.668	86.84	71.841	22.624	0	0	0	9.587		362.048
	Total		98.01		621	745	968	868	788	401	232	115	21	10	4769	9128.442

								Append	ix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
6	Bahli	Bahli	Bahli	C-83 Bahli	38.47	Deodar	568	397	189	125	48	16	5	1	3	0	1352	
						Volume in m3	101.1	192.94	196.37	228	137.04	66.016	28.19	7.39	28.152	0		985.205
						Kail	376	374	404	246	81	89	22	14	7	0	1613	
						Volume in m3	57.152	158.2	389.46	436.65	231.26	374.245	128.128	107.98	69.104	0		1952.174
						Spruce	207	305	421	324	100	112	25	21	21	0	1536	
						Volume in m3	28.152	130.85	437.84	637.956	321.7	535.808	166.725	186.31	239.27	0		2684.612
						Ban	236	361	401	428	194	388	178	130	70	0	2386	
						Volume in m3	31.624	112.99	263.46	514.028	382.96	1162.45	762.73	761.41	540.61	0		4532.256
						Other B.L. Species	241	398	327	110	23	21	7	0	0	0	1127	
						Volume in m3	22.654	117.01	231.52	146.96	50.071	67.872	31.5	0	0	0		667.585
		Total			38.47		1628	1835	1742	1233	446	626	237	166	101	0	8014	10821.83
7	Rampur	Rampur	Sanathali	C-109 b Sanathali	77.76	Deodar	491	2129	723	220	46	24	11	4	1	1	3650	
						Volume in m3	87.398	1034.7	751.2	401.28	131.33	99.024	62.018	29.56	9.384	11.618		2617.503
						Kail	1160	1005	917	933	662	466	274	168	70	60	5715	

		Volume in m3	176.32	425.12	883.99	1656.08	1890	1959.53	1595.78	1295.8	691.04	738.06		11311.7
		Spruce	752	1360	1184	1273	797	551	341	172	147	132	6709	
		Volume in m3	102.27	583.44	1231.4	2506.54	2563.9	2635.98	2274.13	1526	1674.9	1878.89		16977.46
		Fir	101	4	290	197	192	205	104	110	11	46	1260	
		Volume in m3	13.736	1.716	301.6	387.893	617.66	980.72	693.576	975.92	125.33	654.764		4752.923
		Ban	198	240	117	67	61	55	52	50	30	13	883	
		Volume in m3	26.532	75.12	76.869	80.467	120.41	164.78	222.82	292.85	231.69	128.622		1420.164
		Mohru	503	479	168	52	16	7	5	0	1	1	1232	
		Volume in m3	67.402	143.7	168	93.6	48	32.2	31.5	0	9.6	12.2		606.202
		Taxus	481	464	161	95	73	71	75	10	5	2	1437	
		Volume in m3	50.024	108.58	75.187	77.995	95.63	138.095	205.05	36.85	24.015	12.188		823.61

								Append	lix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Other B.L. Species	708	632	457	216	125	103	73	60	48	17	2439	
						Volume in m3	66.552	185.81	323.56	288.576	272.13	332.896	328.5	358.92	368.54	162.979		2688.456
		Total					4394	6313	4017	3053	1972	1482	935	574	313	272	23325	41198.02
		G. Total		465.74		39966	32149	22126	18949	8912	6822	4961	3147	1495	1078	139605	203251.4	

	Ge	eneral Abstra	ct of Deo/Ka	il Working C	ircle Specie	s wise No. &	volume	of Deo/K	ail Work	ing Circle	PB-I Are	ea	
_	Total Area enumerated	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total

	(in Ha.)		V	IV	III	IIA	ІІВ	IA	IB	IC	ID	IE	
	465.74	Deodar	3146	4389	2359	2084	1276	808	462	208	80	53	14865
1		Volume in m3	559.99	2133.05	2451	3801.22	3643	3333.8	2604.8	1537.12	750.72	615.75	21430.4
		Kail	17361	12005	7850	6609	3432	2385	1665	980	461	275	53023
2		Volume in m3	2638.87	5078.12	7567.4	11730.98	9798.4	10029	9697	7558.74	4551	3382.78	72032.11
3		Fir	128	49	322	240	222	233	127	127	22	46	1516
		Volume in m3	17.41	21.02	334.88	472.56	714.17	1114.7	846.96	1126.74	250.67	654.76	5553.854
		Spruce	10788	6886	4905	4685	1982	1690	1418	946	482	503	34285
4		Volume in m3	1467.17	2954.09	5101.2	9224.77	6376.1	8085	9456.6	8392.91	5491.9	7159.7	63709.45
		Ban	2753	3010	2598	2642	912	1019	633	465	193	61	14286
5		Volume in m3	368.9	942.13	1706.89	3173.04	1800.3	3052.9	2712.4	2723.51	1490.5	603.53	18574.16
6		Walnut	16	28	68	89	33	41	29	18	7	9	338
		Volume in m3	1.26	5.6	54.4	133.5	82.5	155.8	147.9	129.6	62.3	101.7	874.564
		Mohru	523	498	178	62	22	8	8	1	2	4	1306
7		Volume in m3	70.082	149.4	178	111.6	66	36.8	50.4	8	19.2	48.8	738.282
8		Mapple	1	1	1	1	1	0	0	0	0	0	5
		Volume in m3	0.12	0.2	0.7	1.3	2.1	0	0	0	0	0	4.417

Appendix-IX

1	2	3	4	5	6	7	8	9	10	11	12	13	14
9		Taxus	483	467	165	98	76	71	75	10	5	2	1452
		Volume in m3	50.23	109.28	77.06	80.46	99.56	138.1	205.05	36.85	24.02	12.19	832.781
10		Brass	126	108	48	10	1	0	0	0	0	0	293
		Volume in m3	11.84	31.75	33.98	13.36	2.18	0	0	0	0	0	93.117
11		Kunish	26	48	27	3	2	0	2	0	0	0	108
		Volume in m3	2.44	14.11	19.12	4.01	4.35	0	9	0	0	0	53.034
12		Tooni	0	0	0	1	0	0	0	0	0	0	1
		Volume in m3	0	0	0	1.34	0	0	0	0	0	0	1.336
13		Kainth	1	1	0	0	0	0	0	0	0	0	2
		Volume in m3	0.09	0.29	0	0	0	0	0	0	0	0	0.388
14		Chil	8	0	0	3	2	3	0	0	0	0	16
		Volume in m3	0.71	0	0	4.43	4.94	11.37	0	0	0	0	21.453
15		Poplar	27	39	32	6	1	2	2	2	0	0	111
		Volume in m3	2.54	11.47	22.66	8.02	2.18	6.46	9	11.96	0	0	74.281
16		Khanor	6	8	13	21	49	47	47	56	35	11	293
		Volume in m3	0.56	2.35	9.2	28.06	106.67	151.9	211.5	334.99	268.73	105.46	1219.432
17		Jamun	36	91	79	25	10	2	1	1	0	0	245
		Volume in m3	3.38	26.75	55.93	33.4	21.77	6.46	4.5	5.98	0	0	158.186
18		Other B.L. Species	4537	4521	3481	2370	891	513	492	333	208	114	17460
		Volume in m3	426.48	1329.17	2464.55	3166.32	1939.7	1658	2214	1992.01	1597	1092.92	17880.19

Total Trees =	39966	32149	22126	18949	8912	6822	4961	3147	1495	1078	139605
Total volume =	5622.09	12808.8	20076.96	31988.35	24664	27780	28169	23858.4	14506	13777.6	203251.4

								Append	ix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Enumerat	ion Resul	t of Deo/l	Kail Wor	king Circl	e PB-II							
Sr. No.	Name of	Name of	Name of	Name of	Area in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
NO.	Range	Block	Beat	Forest	на.		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Gahan	Peojna	UPF-29 Peojna	16.2	Kail	5964	2490	539	581	651	282	111	0	0	0	10618	
						Volume in m3	906.53	1053.3	519.6	1031.28	1858.6	1185.81	646.464	0	0	0		7201.548
						Other B.L. Species	334	191	337	145	136	195	73	0	0	0	1411	
						Volume in m3	31.396	56.154	238.6	193.72	296.07	630.24	328.5	0	0	0		1774.678
		Total			16.2		6298	2681	876	726	787	477	184	0	0	0	12029	8976.226
2	Nankhari	Sholi	Chakti	C-34 Thailli	115.02	Deodar	4176	1856	3016	1972	2320	1856	1041	812	37	22	17108	
						Volume in m3	743.33	902.02	3133.6	3596.93	6623.6	7657.86	5869.158	6000.7	347.21	255.596		35129.99
						Kail	1685	1842	1439	3928	1850	1875	2795	1660	1876	532	19482	
						Volume in m3	256.12	779.17	1387.2	6972.2	5281.8	7884.38	16278.08	12804	18520	6544.13		76706.47
						Spruce	116	455	111	1456	728	86	79	15	49	17	3112	

				Volume in m3	15.776	195.2	115.44	2866.86	2342	411.424	526.85	133.08	558.31	241.978		7406.89
				Chil	75	21	10	13	0	0	1	1	1	0	122	
				Volume in m3	6.675	6.888	7.75	19.214	0	0	5.466	7.531	10.013	0		63.537
				Ban	784	968	756	1266	501	963	1176	733	868	431	8446	
				Volume in m3	105.06	302.98	496.69	1520.47	988.97	2885.15	5039.16	4293.2	6703.6	4264.31		26599.54
				Other B.L. Species	62	84	73	124	118	138	38	27	25	15	704	
				Volume in m3	5.828	24.696	51.684	165.664	256.89	446.016	171	161.51	191.95	143.805		1619.043
	Total	115.02		6898	5226	5405	8759	5517	4918	5130	3248	2856	1017	48974	147525.5	

								Append	ix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
3	Rampur	Rampur	Pashada	C-110 C Banauli	36.45	Deodar	121	24	12	24	22	11	0	0	0	0	214	
						Volume in m3	21.538	11.664	12.468	43.776	62.81	45.386	0	0	0	0		197.642
						Kail	843	943	2314	2415	2214	545	117	70	0	0	9461	
						Volume in m3	128.14	398.89	2230.7	4286.63	6321	2291.73	681.408	539.91	0	0		16878.36
						Spruce	729	759	784	590	370	211	80	0	21	28	3572	
						Volume in m3	99.144	325.61	815.36	1161.71	1190.3	1009.42	533.52	0	239.27	398.552		5772.885
						Ban	46	71	84	21	40	0	0	0	0	0	262	
						Volume in m3	6.164	22.223	55.188	25.221	78.96	0	0	0	0	0		187.756

						Other B.L. Species	14	23	42	22	24	15	2	3	6	0	151	
						Volume in m3	1.316	6.762	29.736	29.392	52.248	48.48	9	17.946	46.068	0		240.948
		Total			36.45		1753	1820	3236	3072	2670	782	199	73	27	28	13660	23277.59
4	Sarahan	Jaghori	Rawancha	C-123 a Rawancha	42.93	Deodar	626	775	549	460	353	194	105	53	25	6	3146	
						Volume in m3	111.43	376.65	570.41	839.04	1007.8	800.444	592	392	235	70		4993.756
						Kail	232	382	470	410	290	101	70	5	4	0	1964	
						Volume in m3	35.264	161.59	453.08	727.75	827.95	424.705	407.68	38.565	39.488	0		3116.068
						Spruce	103	292	288	190	183	61	0	0	0	0	1117	
						Volume in m3	14.008	125.27	299.52	374.11	588.71	291.824	0	0	0	0		1693.441
						Mohru	168	374	403	202	227	7	3	0	0	0	1384	
						Volume in m3	22.512	112.2	403	363.6	681	32.2	18.9	0	0	0		1633.412
			42.93		1129	1823	1710	1262	1053	363	178	58	29	6	7611	11436.68		
		G. Total		210.6		16078	11550	11227	13819	10027	6540	5691	3379	2912	1051	82274	191216	

					Ap	pendix-IX							
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	General Abstract of Deo/Kail Working Circle Species wise No. & volume of Deo/Kail Working Circle PB-II Area												
Sr.	Total Area enumerated	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
No.	(in Ha.)	•	V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
1	248.26	Deodar	4923	2655	3577	2456	2695	2061	1146	865	62	28	20468

		Volume in m3	876.29	1290.33	3716.5	4479.74	7694.2	8503.7	6461.2	6392.35	581.81	325.3	40321.39
		Kail	8724	5657	4762	7334	5005	2803	3093	1735	1880	532	41525
2		Volume in m3	1326.05	2392.91	4590.57	13017.85	14289	11787	18014	13382.1	18559	6544.13	103902.4
		Spruce	948	1506	1183	2236	1281	358	159	15	70	45	7801
3		Volume in m3	128.93	646.07	1230.32	4402.68	4121	1712.7	1060.4	133.08	797.58	640.53	14873.22
		Mohru	168	374	403	202	227	7	3	0	0	0	1384
4		Volume in m3	22.51	112.2	403	363.6	681	32.2	18.9	0	0	0	1633.412
		Chil	75	21	10	13	0	0	1	1	1	0	122
5		Volume in m3	6.68	6.89	7.75	19.21	0	0	5.47	7.53	10.01	0	63.537
		Ban	830	1039	840	1287	541	963	1176	733	868	431	8708
6		Volume in m3	111.22	325.21	551.88	1545.69	1067.9	2885.2	5039.2	4293.18	6703.6	4264.31	26787.3
7		Other B.L. Species	410	298	452	291	278	348	113	30	31	15	2266
	Volume i m3		38.54	87.61	320.02	388.78	605.21	1124.7	508.5	179.46	238.02	143.81	3634.669
	Total Trees	s =	16078	11550	11227	13819	10027	6540	5691	3379	2912	1051	82274
	Total volum	ne =	2510.22	4861.22	10820.04	24217.56	28459	26045	31107	24387.7	26890	11918.1	191216

								Append	lix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
				T		Enumerati	on Resul	t of Deo/I	Kail Worl	king Circle	e PB-III			1				
Sr. No.	Name of Range	Name of Block	Name of Beat	Name of Forest	Area in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
110.	Kange	DIUCK	Deat	Forest	11a.		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Nankhari	Nankhari	C-32 Bhorja	27.94	Deodar	3503	2289	1864	791	582	318	162	38	4	2	9553	
						Volume in m3	623.53	1112.5	1936.7	1442.78	1661.6	1312.07	913.356	280.82	37.536	23.236		9344.094
						Kail	1488	934	646	131	163	89	40	78	87	17	3673	
						Volume in m3	226.18	395.08	622.74	232.525	465.37	374.245	232.96	601.61	858.86	209.117		4218.692
						Spruce	24	10	0	0	28	9	6	1	0	0	78	
						Volume in m3	3.264	4.29	0	0	90.076	43.056	40.014	8.872	0	0		189.572
Total					27.94	Total	5015	3233	2510	922	773	416	208	117	91	19	13304	13752.36
2	Bahli	Bahli	Bahli	C-82 Bahli	46.57	Deodar	2818	3839	539	950	172	127	90	14	6	3	8558	
						Volume in m3	501.6	1865.8	560.02	1732.8	491.06	524.002	507.42	103.46	56.304	34.854		6377.279
						Kail	28	34	743	834	150	14	0	0	0	0	1803	
						Volume in m3	4.256	14.382	716.25	1480.35	428.25	58.87	0	0	0	0		2702.36
						Spruce	0	24	38	0	0	0	0	0	0	0	62	
						Volume in m3	3.35	10.955	101.84	55.246	49.35	29.96	0	0	0	0		250.696
						Ban	25	35	155	46	25	10	0	0	0	0	296	
					_	Volume in m3	1.128	7.938	33.276	48.096	0	0	0	0	0	0		90.438
				Total	46.57	Deodar	2883	3959	1522	1866	347	151	90	14	6	3	10841	9470.589
						Volume in m3	395.52	1102.7	2455.2	7268.64	9998.2	9753.86	15961.18	12060	2486.8	197.506		61680.05

			Kail	1491	1148	569	420	200	192	1168	941	4	0	6133	
			Volume in m3	226.63	485.6	548.52	745.5	571	807.36	6802.432	7257.9	39.488	0		17484.47
			Spruce	267	128	51	68	25	6	0	6	2	0	553	
			Volume in m3	36.312	54.912	53.04	133.892	80.425	28.704	0	53.232	22.788	0		463.305

								Append	ix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Chil	362	403	172	113	1	5	3	0	0	0	1059	
						Volume in m3	32.218	132.18	133.3	167.014	2.47	18.945	16.398	0	0	0		502.529
						Other B.L. Species	136	137	75	12	4	11	9	0	0	0	384	
						Volume in m3	12.784	40.278	53.1	16.032	8.708	35.552	40.5	0	0	0		206.954
			T	otal	85.86		4478	4085	3230	4598	3732	2578	4011	2579	271	17	29579	80337.3
			G. '	Total	160.37		12376	11277	7262	7386	4852	3145	4309	2710	368	39	53724	103560

	Ger	neral Abstract	t of Deo/Kail	Working Cir	rcle Species	wise No. &	volume o	f Deo/Ka	ail Worki	ng Circle	PB-III A	rea	
Sr. No.	Total Area enumerated (in Ha.)	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
			V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
1	160.37	Deodar	6321	6128	2403	1741	754	445	252	52	10	5	18111

		Volume in m3	1125.14	2978.21	2496.72	3175.58	2152.7	1836.1	1420.8	384.28	93.84	58.09	15721
2		Kail	1516	968	1389	965	313	103	40	78	87	17	5476
		Volume in m3	230.43	409.46	1339	1712.88	893.62	433.12	232.96	601.61	858.86	209.12	6921
3		Ban	25	35	155	46	25	10	0	0	0	0	296
		Volume in m3	3.35	10.955	101.835	55.246	49.35	29.96	0	0	0		251
4		Spruce	24	34	38	0	28	9	6	1	0	0	140
		Volume in m3	3.264	14.586	39.52	0	90.076	43.056	40.014	8.872	0	0	239
5		Other B.L. Species	12	27	47	36	0	0	0	0	0	0	122
		Volume in m3	1.128	7.938	33.276	48.096	0	0	0	0	0	0	90
	Total Trees	=	7898	7192	4032	2788	1120	567	298	131	97	22	24145
	Total volum	e =	1363.31	3421.15	4010.34	4991.8	3185.7	2342.2	1693.8	994.77	952.7	267.21	23222.95

								Append	lix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Enumerati	on Result	t of Deo/F	Kail Wor	king Circl	e PB-IV							
Sr.	Name of	Name of	Name of	Name of	Area in	G ·	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	NT 1	X 7.1
No.	Range	Block	Beat	Forest	На.	Species	V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	Number	Volume
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Nankhari	Nankhari	C-33 Bhorja	85.05	Deodar	14247	16782	1154	142	265	280	163	79	32	3	33147	
						Volume in m3	2536	8156.1	1199	259.008	756.58	1155.28	918.994	583.81	300.29	34.854		15899.83
						Kail	10569	8796	3289	584	523	587	403	241	102	16	25110	

						Volume in m3	1606.5	3720.7	3170.6	1036.6	1493.2	2468.34	2347.072	1858.8	1006.9	196.816		18905.56
						Spruce	52	22	0	0	24	8	2	0	0	0	108	
						Volume in m3	7.072	9.438	0	0	77.208	38.272	13.338	0	0	0		145.328
		Total			85.05		24868	25600	4443	726	812	875	568	320	134	19	58365	34950.72
2	Nankhari	Nankhari	Kungal Munder	C-48 Punan	82.21	Deodar	75	62	110	21	10	4	0	0	0	0	282	
						Volume in m3	13.35	30.132	114.29	38.304	28.55	16.504	0	0	0	0		241.13
						Kail	2840	1526	978	520	610	540	224	110	0	0	7348	
						Volume in m3	431.68	645.5	942.79	923	1741.6	2270.7	1304.576	848.43	0	0		9108.226
						Spruce	2560	1903	1027	721	493	398	248	194	162	0	7706	
						Volume in m3	348.16	816.39	1068.1	1419.65	1586	1904.03	1653.912	1721.2	1845.8	0		12363.2
						Ban	56	34	27	17	8	0	0	0	0	0	142	
						Volume in m3	7.504	10.642	17.739	20.417	15.792	0	0	0	0	0		72.094
						Other B.L. Species	360	230	185	0	0	0	0	0	0	0	775	
						Volume in m3	33.84	67.62	130.98	0	0	0	0	0	0	0		232.44
		Total			82.21		5891	3755	2327	1279	1121	942	472	304	162	0	16253	22017.09

								Append	ix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

3	Nankhari	Nankhari	Kungal Munder	C-53 Kungal	36.45	Deodar	1026	1564	930	860	90	30	24	0	0	0	4524	
						Volume in m3	182.63	760.1	966.27	1568.64	256.95	123.78	135.312	0	0	0		3993.684
						Kail	1020	670	390	280	112	90	45	26	19	0	2652	
						Volume in m3	155.04	283.41	375.96	497	319.76	378.45	262.08	200.54	187.57	0		2659.806
						Spruce	480	355	176	107	36	24	24	24	17	0	1243	
						Volume in m3	65.28	152.3	183.04	210.683	115.81	114.816	160.056	212.93	193.7	0		1408.608
						Other B.L. Species	130	90	42	0	0	0	0	0	0	0	262	
						Volume in m3	12.22	26.46	29.736	0	0	0	0	0	0	0		68.416
		Total			36.45		2656	2679	1538	1247	238	144	93	50	36	0	8681	8130.514
4	Nankhari	Gahan	Taprog	C-7 Keoligad	91.12	Deodar	10317	7875	4447	6489	2196	395	221	54	9	0	32003	
						Volume in m3	1836.4	3827.3	4620.4	11835.9	6269.6	1629.77	1245.998	399.06	84.456	0		31748.91
						Kail	990	458	271	354	75	46	36	13	13	0	2256	
						Volume in m3	150.48	193.73	261.24	628.35	214.13	193.43	209.664	100.27	128.34	0		2079.632
						Spruce	3411	1360	928	1472	54	83	31	4	0	0	7343	
						Volume in m3	463.9	583.44	965.12	2898.37	173.72	397.072	206.739	35.488	0	0		5723.841
		Total			91.12		14718	9693	5646	8315	2325	524	288	71	22	0	41602	39552.38
5	Sarahan	Jaghori	Kut	C-121 g Khutani	78.97	Deodar	126	324	438	114	279	162	48	33	2	0	1526	
						Volume in m3	22.428	157.46	455.08	207.936	796.55	668.412	270.624	243.87	18.768	0		2841.129
						Kail	212	532	695	170	264	123	40	31	0	0	2067	
						Volume in m3	32.224	225.04	669.98	301.75	753.72	517.215	232.96	239.1	0	0		2971.988

						Spruce	11	24	27	6	15	15	2	4	0	0	104	
						Volume in m3	1.496	10.296	28.08	11.814	48.255	71.76	13.338	35.488	0	0		220.527
						Fir	1	2	9	6	10	5	0	1	0	0	34	
						Volume in m3	0.136	0.858	9.36	11.814	32.17	23.92	0	8.872	0	0		87.13
								Append	ix-IX									_
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Chil	0	0	0	0	1	0	0	0	0	0	1	
						Volume in m3	0	0	0	0	2.47	0	0	0	0	0		2.47
						Birdchery	0	0	0	1	2	1	0	0	0	0	4	
						Volume in m3	0	0	0	1.4	4.4	3.2	0	0	0	0		9
						Walnut	1	0	1	0	1	1	0	0	0	0	4	
						Volume in m3	0.079	0	0.8	0	2.5	3.8	0	0	0	0		7.179
						Other B.L. Species	7	0	1	2	0	0	0	0	0	0	10	
						Volume in m3	0.658	0	0.708	2.672	0	0	0	0	0	0		4.038
		Total			78.97		358	882	1171	299	572	307	90	69	2	0	3750	6143.461
6	Bahli	Surad	Beaunthal	C-69 Beaunthal	97.2	Deodar	22	19	11	0	0	0	0	0	0	0	52	
						Volume in m3	3.916	9.234	11.429	0	0	0	0	0	0	0		24.579
						Kail	180	198	397	601	613	409	418	120	140	23	3099	
						Volume in m3	27.36	83.754	382.71	1066.78	1750.1	1719.85	2434.432	925.56	1382.1	282.923		10055.55
						Chil	0	128	894	1102	503	318	180	53	40	0	3218	
						Volume in m3	0	41.984	692.85	1628.76	1242.4	1204.9	983.88	399.14	400.52	0	,	6594.445

						Ban	290	398	1198	220	302	200	151	70	179	180	3188	
						Volume in m3	38.86	124.57	787.09	264.22	596.15	599.2	647.035	409.99	1382.4	1780.92		6630.45
						Other B.L. Species	1154	450	66	0	0	0	0	0	0	0	1670	
						Volume in m3	108.48	132.3	46.728	0	0	0	0	0	0	0		287.504
		Total			97.2		1646	1193	2566	1923	1418	927	749	243	359	203	11227	23592.53
7	Bahli	Surad	Beaunthal	C-63 Surad South	12.15	Deodar	571	684	189	52	20	6	5	9	1	0	1537	
						Volume in m3	101.64	332.42	196.37	94.848	57.1	24.756	28.19	66.51	9	0		911.221

								Append	lix-IX									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Kail	274	202	66	22	4	2	3	0	0	0	573	
						Volume in m3	41.648	85.446	63.624	39.05	11.42	8.41	17.472	0	0	0		267.07
		Total			12.15		845	886	255	74	24	8	8	9	1	0	2110	1178.291
8	Bahli	Bahli	Bahli	C-81 Bahli	12.15	Deodar	566	2190	2933	880	178	40	1	0	0	0	6788	
						Volume in m3	100.75	1064.3	3047.4	1605.12	508.19	165.04	5.638	0	0	0		6496.463
						Kail	430	323	195	45	25	18	7	3	1	0	1047	
						Volume in m3	65.36	136.63	187.98	79.875	71.375	75.69	40.768	23.139	9.872	0		690.688
						Spruce	75	90	84	25	16	3	0	0	0	0	293	

				Volume in m3	10.2	38.61	87.36	49.225	51.472	14.352	0	0	0	0		251.219
				Other B.L. Species	4	7	1	0	0	0	0	0	0	0	12	
				Volume in m3	0.376	2.058	0.708	0	0	0	0	0	0	0		3.142
		Total	12.15		1075	2610	3213	950	219	61	8	3	1	0	8140	7441.512
		G. Total	495.3		52057	47298	21159	14813	6729	3788	2276	1069	717	222	150128	143006.5

	(General Abstı	act of Deo/K	Kail Working	Circle Spec	ies wise No.	& volum	e of Deo	/Kail Wo	rking Circ	le PB-IV		
Sr.	Total Area enumerated	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
No.	(in Ha.)		V	IV	III	ПА	IIB	IA	IB	IC	ID	IE	
		Deodar	26950	29500	10212	8558	3038	917	462	175	44	3	79859
1		Volume in m3	4797.1	14337	10610.27	15609.79	8673.5	3783.5	2604.8	1293.25	412.9	34.85	62156.95
		Spruce	6589	3754	2242	2331	638	531	307	226	179	0	16797
2	495.3	Volume in m3	896.1	1610.47	2331.68	4589.74	2052.5	2540.3	2047.4	2005.07	2039.5	0	20112.72
		Fir	1	2	9	6	10	5	0	1	0	0	34
3		Volume in m3	0.14	0.86	9.36	11.81	32.17	23.92	0	8.87	0	0	87.13

	Appendix-IX														
1	2	3	4	5	6	7	8	9	10	11	12	13	14		
4		Ban	346	432	1225	237	310	200	151	70	179	180	3330		

		Volume in m3	46.36	135.22	804.83	284.64	611.94	599.2	647.04	409.99	1382.4	1780.92	6702.54
5		Kail	16515	12705	6281	2576	2226	1815	1176	544	275	39	44152
		Volume in m3	2510.28	5374.22	6054.88	4572.4	6355.2	7632.1	6849	4195.87	2714.8	479.74	46738.52
6		Birdcherry	0	0	0	1	2	1	0	0	0	0	4
		Volume in m3	0	0	0	1.4	4.4	3.2	0	0	0	0	9
7		Walnut	1	0	1	0	1	1	0	0	0	0	4
		Volume in m3	0.08	0	0.8	0	2.5	3.8	0	0	0	0	7.18
8		Chil	0	128	894	1102	504	318	180	53	40	0	3219
		Volume in m3	0	41.98	692.85	1628.76	1244.9	1204.9	983.88	399.14	400.52	0	6596.92
9		Other B.L. Species	1655	777	295	2	0	0	0	0	0	0	2729
		Volume in m3	155.57	228.44	208.86	2.67	0	0	0	0	0	0	595.54
Total Trees =			52057	47298	21159	14813	6729	3788	2276	1069	717	222	150128
	Total volume =			21728.18	20713.53	26701.21	18977	15791	13132	8312.2	6950.2	2295.51	143006.5

APPENDIX-X Enumeration Result of Fir/Spruce Working Circle PB-I 90-100 20-30 40-50 80-90 10-20 30-40 50-60 60-70 70-80 100 Sr. Name of Name of Name of Name of over **Species** Area in Ha. Number Volume No. Block Beat **Forest** Range \mathbf{V} IV Ш IIA IIB ΙB IA IC ID ΙE 3 5 6 7 8 13 15 19 1 2 4 9 10 11 12 14 17 18 16 NDPF-C-78 Phancha 46.5906 354 195 98 134 99 69 30 26 14 15 1034 Sarahan Phancha Spruce Phancha Volume 318.48 330.096 48.144 83.655 101.92 263.846 200.07 230.67 159.52 1949.912 213.51 in m3 198 88 34 80 47 30 19 Deodar 9 10 521 6 Volume 35.244 42.768 35.326 145.92 134.19 123.78 107.122 66.51 56.304 863.339 116.18 in m3 Kail 98 57 42 19 9 2 3 5 5 241 Volume 14.896 24.111 40.488 33.725 25.695 8.41 17.472 38.565 49.36 265.023 12.301 in m3 44 93 89 79 38 17 45 3 7 3 Mapple 418 Volume 125.4 606.248 5.148 18.6 62.3 102.7 94.5 85 19.5 59.5 33.6 in m3 158 54 37 3 Kharsu 16 8 3 0 281 1 Volume 21.172 18.9 16.2 28.8 37 13.8 9.6 0 177.472 in m3 Walnut 15 14 18 20 11 17 11 5 6 2 119 Volume 0.869 27 50 22.6 324.769 11.2 64.6 56.1 36 53.4 in m3 84 Taxus 175 38 33 10 6 3 0 0 350 Volume 17.746 18.2 19.656 27.093 13.1 11.67 8.202 3.685 0 0 119.352 in m3 Other B.L. 1670 630 321 160 43 19 5 2 2 0 2852 Species

						Volume in m3	156.98	185.22	227.27	213.76	93.611	61.408	22.5	11.964	15.356	0		988.067
	Total						2708	1216	673	539	281	184	91	52	41	31	5816	5294.182
2	Sarahan	Phancha	Sarpara	C-142 b Margot	81	Deodar	500	1200	648	332	178	304	310	101	53	52	3678	
						Volume in m3	89	583.2	673.27	605.568	508.19	1254.3	1747.78	746.39	497.35	604.136		7309.192
						Kail	3	6	8	7	14	15	9	8	2	1	73	
						Volume in m3	0.456	2.538	7.712	12.425	39.97	63.075	52.416	61.704	19.744	12.301		272.341

								APPEN	NDIX-X									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Spruce	323	389	384	443	302	305	189	182	93	87	2697	
						Volume in m3	43.928	166.88	399.36	872.267	971.53	1459.12	1260.441	1614.7	1059.6	1238.36		9086.235
						Ban	51	30	22	33	28	46	23	13	6	29	281	
						Volume in m3	6.834	9.39	14.454	39.633	55.272	137.816	98.555	76.141	46.338	286.926		771.359
						Mohru	495	383	235	182	84	74	52	36	7	16	1564	
						Volume in m3	66.33	114.9	235	327.6	252	340.4	327.6	288	67.2	195.2		2214.23
						Mapple	1434	477	223	123	74	57	28	11	1	1	2429	
						Volume in m3	167.78	95.4	156.1	159.9	155.4	188.1	140	71.5	8.5	11.2		1153.878
						Walnut	117	97	85	50	17	12	3	2	2	0	385	
						Volume in m3	9.243	19.4	68	75	42.5	45.6	15.3	14.4	17.8	0		307.243
						Taxus	32	24	28	16	17	5	3	0	1	0	126	
						Volume in m3	3.328	5.616	13.076	13.136	22.27	9.725	8.202	0	4.803	0		80.156

						Other B.L. Species	2012	926	352	135	45	20	8	6	1	6	3511	
						Volume in m3	189.13	272.24	249.22	180.36	97.965	64.64	36	35.892	7.678	57.522		1190.645
		Total			81		4967	3532	1985	1321	759	838	625	359	166	192	14744	22385.279
3	Nankhari Nankhari Bai Bahli C-54 Bah			C-54 Bahli	151.06	Spruce	7330	4110	2475	1679	1227	874	1160	938	804	0	20597	
						Volume in m3	996.88	1763.2	2574	3305.95	3947.3	4181.22	7736.04	8321.9	9160.8	0		41987.248
						Deodar	260	240	130	97	86	60	54	19	35	0	981	
						Volume in m3	46.28	116.64	135.07	176.928	245.53	247.56	304.452	140.41	328.44	0		1741.31
						Kail	860	420	226	124	88	86	61	36	14	10	1925	
						Volume in m3	130.72	177.66	217.86	220.1	251.24	361.63	355.264	277.67	138.21	123.01		2253.364
						Kharsu	320	110	65	16	0	0	0	0	0	0	511	
						Volume in m3	42.88	33	65	28.8	0	0	0	0	0	0		169.68
						Other B.L. Species	220	64	36	11	0	0	0	0	0	0	331	
						Volume in m3	20.68	18.816	25.488	14.696	0	0	0	0	0	0		79.68
								APPEN	DIX-X									_
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	1		151.06		8990	4944	2932	1927	1401	1020	1275	993	853	10	24345	46231.282		
4	Nankhari	Nankhari	Kungal Mundar	C-52 Kungal Mundar	141.75	Fir	6135	2731	1674	1266	1343	648	519	476	267	37	15096	
						Volume in m3	834.36	1171.6	1741	2492.75	4320.4	3100.03	3461.21	4223.1	3042.2	526.658		24913.275
						Spruce	2913	2332	1475	1066	1144	834	628	277	303	41	11013	

				Volume in m3	396.17	1000.4	1534	2098.95	3680.2	3989.86	4188.13	2457.5	3452.4	583.594		23381.306
				Deodar	902	360	210	154	172	179	87	22	24	0	2110	
				Volume in m3	160.56	174.96	218.19	280.896	491.06	738.554	490.506	162.58	225.22	0		2942.518
				Kail	1065	546	230	186	183	152	102	50	30	15	2559	
				Volume in m3	161.88	230.96	221.72	330.15	522.47	639.16	594.048	385.65	296.16	184.515		3566.706
				Other B.L. Species	1600	895	600	260	180	130	140	80	60	0	3945	
				Volume in m3	150.4	263.13	424.8	347.36	391.86	420.16	630	478.56	460.68	0		3566.95
Total		141.75		12615	6864	4189	2932	3022	1943	1476	905	684	93	34723	58370.755	
	G. Tota	al	420.401		29280	16556	9779	6719	5463	3985	3467	2309	1744	326	79628	132281.5

	Ger	neral Abstr	act of Fir/S	pruce Working	g Circle Specie	s wise No. &	& volume	of Fir/S	pruce Wo	rking Cir	cle PB-I	Area	
Sr.	Total Area enumerated	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
No.	in Ha.	•	V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
		Deodar	1860	1888	1022	663	483	573	470	151	118	62	7290
1		Volume in m3	331.08	917.57	1061.86	1209.31	1379	2364.2	2649.9	1115.89	1107.3	720.32	12856.36
		Kail	2026	1029	506	336	294	255	175	99	51	27	4798
2	420.4006	Volume in m3	307.95	435.27	487.78	596.4	839.37	1072.3	1019.2	763.59	503.47	332.13	6357.434
3	-	Fir	6135	2731	1674	1266	1343	648	519	476	267	37	15096
		Volume in m3	834.36	1171.6	1740.96	2492.75	4320.4	3100	3461.2	4223.07	3042.2	526.66	24913.28

					AP	PENDIX-X							
1	2	3	4	5	6	7	8	9	10	11	12	13	14
		Spruce	10920	7026	4432	3322	2772	2082	2007	1423	1214	143	35341
4		Volume in m3	1485.12	3014.15	4609.28	6541.02	8917.5	9960.3	13385	12624.9	13832	2035.46	76404.7
		Ban	51	30	22	33	28	46	23	13	6	29	281
5		Volume in m3	6.83	9.39	14.45	39.63	55.27	137.82	98.56	76.14	46.34	286.93	771.359
		Kharsu	478	164	102	32	8	3	3	1	1	0	792
6		Volume in m3	64.05	49.2	102	57.6	24	13.8	18.9	8	9.6	0	347.152
		Walnut	128	112	99	68	37	29	14	7	8	2	504
7		Volume in m3	10.11	22.4	79.2	102	92.5	110.2	71.4	50.4	71.2	22.6	632.012
		Mohru	495	383	235	182	84	74	52	36	7	16	1564
8		Volume in m3	66.33	114.9	235	327.6	252	340.4	327.6	288	67.2	195.2	2214.23
		Mapple	1478	570	312	202	119	95	45	14	8	4	2847
9		Volume in m3	172.93	114	218.4	262.6	249.9	313.5	225	91	68	44.8	1760.126
		Taxus	207	108	66	49	27	11	6	1	1	0	476
10		Volume in m3	21.53	25.27	30.82	40.23	35.37	21.4	16.4	3.69	4.8	0	199.508
11		Other B.L. Species	5502	2515	1309	566	268	169	153	88	63	6	10639
		Volume in m3	517.19	739.41	926.77	756.18	583.44	546.21	688.5	526.42	483.71	57.52	5825.342
	Total Trees	s =	29280	16556	9779	6719	5463	3985	3467	2309	1744	326	79628
	Total volum	ie =	3817.48	6613.16	9506.53	12425.32	16749	17980	21961	19771.1	19236	4221.61	132281.5

Enumeration Result of Fir/Spruce Working Circle PB-II

Sr.	Name of	Name of	Name of	Name of	Area in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
No.	Range	Block	Beat	Forest		_	V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Nankhari	Bai Bahli	C-55 Bai	63.58	Fir	1451	922	526	412	368	196	319	176	198	62	4630	
						Volume in m3	197.34	395.54	547.04	811.228	1183.9	937.664	2127.411	1561.5	2256	882.508		10900.065
						Spruce	1485	722	370	268	256	214	301	134	105	44	3899	
						Volume in m3	201.96	309.74	384.8	527.692	823.55	1023.78	2007.369	1188.8	1196.4	626.296		8290.401

								APPEN	DIX-X									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Deodar	208	109	45	24	36	13	10	7	2	3	457	
						Volume in m3	37.024	52.974	46.755	43.776	102.78	53.638	56.38	51.73	18.768	34.854		498.679
						Kail	695	342	184	138	123	80	44	30	4	2	1642	
						Volume in m3	105.64	144.67	177.38	244.95	351.17	336.4	256.256	231.39	39.488	24.602		1911.933
						Mohru	360	140	20	8	0	0	0	0	0	0	528	
						Volume in m3	48.24	42	20	14.4	0	0	0	0	0	0		124.64
						Ban	180	90	28	12	4	0	0	0	0	0	314	
						Volume in m3	24.12	28.17	18.396	14.412	7.896	0	0	0	0	0		92.994
						Kharsu	360	120	48	19	2	0	0	0	0	0	549	
						Volume in m3	48.24	36	48	34.2	6	0	0	0	0	0		172.44
						Other B.L. Species	210	80	40	21	0	0	0	0	0	0	351	
						Volume in m3	19.74	23.52	28.32	28.056	0	0	0	0	0	0		99.636

		Total			63.58		4949	2525	1261	902	789	503	674	347	309	111	12370	22090.788
2	Nankhari	Nankhari	Bagalti	C-29 (c) Badral	76.14	Spruce	1838	4517	552	35	89	73	120	106	107	0	7437	
						Volume in m3	249.97	1937.8	574.08	68.915	286.31	349.232	800.28	940.43	1219.2	0		6426.171
						Fir	3592	2628	415	486	294	163	87	71	46	0	7782	
						Volume in m3	488.51	1127.4	431.6	956.934	945.8	779.792	580.203	629.91	524.12	0		6464.287
						Other B.L. Species	3142	4428	967	842	383	237	207	177	153	0	10536	
						Volume in m3	295.35	1301.8	684.64	1124.91	833.79	765.984	931.5	1058.8	1174.7	0		8171.551
		Total			76.14		8572	11573	1934	1363	766	473	414	354	306	0	25755	21062.009
3	Rampur	Rampur	Pashada	C-110 d Banauli	34.02	Spruce	419	312	443	1830	1471	927	371	131	143	79	6126	
						Volume in m3	56.984	133.85	460.72	3603.27	4732.2	4434.77	2474.199	1162.2	1629.3	1124.49		19812.056
						Fir	243	359	211	2031	972	313	89	73	64	52	4407	
						Volume in m3	33.048	154.01	219.44	3999.04	3126.9	1497.39	593.541	647.66	729.22	740.168		11740.435
								APPEN	DIX-X									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Kail	313	282	719	760	671	103	101	79	8	6	3042	
						Volume in m3	47.576	119.29	693.12	1349	1915.7	433.115	588.224	609.33	78.976	73.806		5908.131
						Other B.L. Species	106	162	975	216	113	61	0	0	0	0	1633	
						Volume in m3	9.964	47.628	690.3	288.576	246	197.152	0	0	0	0		1479.621
		Total	-		34.02		1081	1115	2348	4837	3227	1404	561	283	215	137	15208	38940.243

4	Sarahan	Phancha	Kaiobil	C-140 c Gemoghati	43.33	Spruce	331	316	339	333	333	309	239	133	64	68	2465	
						Volume in m3	45.016	135.56	352.56	655.677	1071.3	1478.26	1593.891	1180	729.22	967.912		8209.329
						Fir	121	84	72	49	39	22	14	9	1	3	414	
						Volume in m3	16.456	36.036	74.88	96.481	125.46	105.248	93.366	79.848	11.394	42.702		681.874
						Deodar	33	29	34	42	45	28	7	8	0	1	227	
						Volume in m3	5.874	14.094	35.326	76.608	128.48	115.528	39.466	59.12	0	11.618		486.109
						Kail	33	48	78	95	149	177	70	30	2	0	682	
						Volume in m3	5.016	20.304	75.192	168.625	425.4	744.285	407.68	231.39	19.744	0		2097.631
						Other B.L. Species	999	590	294	116	42	20	9	4	1	0	2075	
						Volume in m3	93.906	173.46	208.15	154.976	91.434	64.64	40.5	23.928	7.678	0		858.674
						Walnut	45	18	28	11	16	7	0	7	0	0	132	
						Volume in m3	3.555	3.6	22.4	16.5	40	26.6	0	50.4	0	0		163.055
						Ban	24	35	16	18	14	15	11	2	0	4	139	
						Volume in m3	3.216	10.955	10.512	21.618	27.636	44.94	47.135	11.714	0	39.576		217.302
						Mohru	321	193	142	70	61	36	20	9	3	3	858	
						Volume in m3	43.014	57.9	142	126	183	165.6	126	72	28.8	36.6		980.914

APPENDIX-X

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Taxus	166	105	22	9	6	0	0	1	0	0	309	
						Volume in m3	17.264	24.57	10.274	7.389	7.86	0	0	3.685	0	0		71.042
		Total			43.33		2073	1418	1025	743	705	614	370	203	71	79	7301	13765.93
		G. Tota	al		217.07		16675	16631	6568	7845	5487	2994	2019	1187	901	327	60634	95858.97

	Gen	eral Abstra	act of Fir/Sp	oruce Working	Circle Species	s wise No. &	k volume	of Fir/Sp	ruce Wo	rking Circ	cle PB-II	Area	
Sr. No.	Total Area enumerated	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
	in Ha.		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
		Deodar	241	138	79	66	81	41	17	15	2	4	684
1		Volume in m3	42.9	67.07	82.08	120.38	231.26	169.17	95.85	110.85	18.77	46.47	984.788
		Kail	1041	672	981	993	943	360	215	139	14	8	5366
2		Volume in m3	158.23	284.26	945.68	1762.58	2692.3	1513.8	1252.2	1072.11	138.21	98.41	9917.695
		Spruce	4073	5867	1704	2466	2149	1523	1031	504	419	191	19927
3		Volume in m3	553.93	2516.94	1772.16	4855.55	6913.3	7286	6875.7	4471.49	4774.1	2718.69	42737.96
4	217.07	Fir	5407	3993	1224	2978	1673	694	509	329	309	117	17233
		Volume in m3	735.35	1713	1272.96	5863.68	5382	3320.1	3394.5	2918.89	3520.8	1665.38	29786.66
		Ban	204	125	44	30	18	15	11	2	0	4	453
5		Volume in m3	27.34	39.13	28.91	36.03	35.53	44.94	47.14	11.71	0	39.58	310.296
		Kharsu	360	120	48	19	2	0	0	0	0	0	549
6		Volume in m3	48.24	36	48	34.2	6	0	0	0	0	0	172.44
7		Mohru	681	333	162	78	61	36	20	9	3	3	1386

	Volume in m3	91.25	99.9	162	140.4	183	165.6	126	72	28.8	36.6	1105.554
	Taxus	166	105	22	9	6	0	0	1	0	0	309
8	Volume in m3	17.26	24.57	10.27	7.39	7.86	0	0	3.69	0	0	71.042
	Walnut	45	18	28	11	16	7	0	7	0	0	132
9	Volume in m3	3.56	3.6	22.4	16.5	40	26.6	0	50.4	0	0	163.055

					API	PENDIX-X							
10		Other B.L. Species	4457	5260	2276	1195	538	318	216	181	154	0	14595
		Volume in m3	418.96	1546.44	1611.41	1596.52	1171.2	1027.8	972	1082.74	1182.4	0	10609.48
	Total Trees	=	16675	16631	6568	7845	5487	2994	2019	1187	901	327	60634
	Total volum	e =	2097.02	6330.9	5955.88	14433.23	16663	13554	12763	9793.87	9663	4605.13	95858.97

						Enumerati	on Resul	t of Fir/S	pruce Wo	orking Cir	cle PB-II	I						
Sr.	Name of	Name of	Name of	Name of		a .	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	., .	
No.	Range	Block	Beat	Forest	Area in Ha.	Species	V	IV	III	ПА	IIB	IA	IB	IC	ID	IE	Number	Volume
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Gahan	Peojna	C-17 DPF Shilla	52.65	Fir	4018	2780	741	513	470	712	257	171	240	72	9974	
						Volume in m3	546.45	1192.6	770.64	1010.1	1512	3406.21	1713.93	1517.1	2734.6	1024.85		15428.456
						Spruce	7814	2400	971	423	351	257	157	160	41	31	12605	
						Volume in m3	1062.7	1029.6	1009.8	832.887	1129.2	1229.49	1047.03	1419.5	467.15	441.254		9668.647

						Other B.L. Species	463	237	143	0	0	0	0	0	0	0	843	
						Volume in m3	43.522	69.678	101.24	0	0	0	0	0	0	0		214.444
						Deodar	1132	940	237	89	217	346	391	157	40	11	3560	
						Volume in m3	201.5	456.84	246.24	162.336	619.54	1427.6	2204.458	1160.2	375.36	127.798		6981.892
		Total			52.65		13427	6357	2092	1025	1038	1315	805	488	321	114	26982	32293.439
2	Nankhari	Gahan	Gahan	C-8 Gahan	60.75	Spruce	162	1067	459	213	57	89	117	146	245	165	2720	
						Volume in m3	22.032	457.74	477.36	419.397	183.37	425.776	780.273	1295.3	2791.5	2348.61		9201.402
						Fir	46	1552	1295	814	419	398	414	331	312	121	5702	
						Volume in m3	6.256	665.81	1346.8	1602.77	1347.9	1904.03	2760.97	2936.6	3554.9	1722.31		17848.425
						Taxus	21	175	250	103	71	0	0	0	0	0	620	
						Volume in m3	2.184	40.95	116.75	84.563	93.01	0	0	0	0	0		337.457
						Mapple	52	91	0	51	41	0	0	0	0	0	235	
						Volume in m3	6.084	18.2	0	66.3	86.1	0	0	0	0	0		176.684

								APPEN	DIX-X									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Other B.L. Species	114	22	115	41	0	82	46	9	11	0	440	
						Volume in m3	10.716	6.468	81.42	54.776	0	265.024	207	53.838	84.458	0		763.7
		Total			60.75		395	2907	2119	1222	588	569	577	486	568	286	9717	28327.668

3	Bahli	Bahli	Sharan Jarashi	C-74 Sharan Jarashi	70.47	Spruce	454	912	1044	854	568	558	302	120	64	80	4956	
						Volume in m3	61.744	391.25	1085.8	1681.53	1827.3	2669.47	2014.038	1064.6	729.22	1138.72		12663.62
						Fir	140	250	420	260	206	72	38	32	28	0	1446	
						Volume in m3	19.04	107.25	436.8	511.94	662.7	344.448	253.422	283.9	319.03	0		2938.538
						Kail	62	140	262	346	324	280	128	64	28	10	1644	
						Volume in m3	9.424	59.22	252.57	614.15	925.02	1177.4	745.472	493.63	276.42	123.01		4676.312
						Other B.L. Species	438	336	261	138	24	33	9	21	0	0	1260	
						Volume in m3	41.172	98.784	184.79	184.368	52.248	106.656	40.5	125.62	0	0		834.138
		Total			70.47		1094	1638	1987	1598	1122	943	477	237	120	90	9306	21112.608
4	Sarahan	Phancha	Sarpara	NDPF-81 Sarpara	89.6817	Spruce	196	186	550	355	483	359	224	115	15	26	2509	
						Volume in m3	26.656	79.794	572	698.995	1553.8	1717.46	1493.86	1020.3	170.91	370.084		7703.842
						Fir	175	282	433	430	359	130	128	27	12	2	1978	
						Volume in m3	23.8	120.98	450.32	846.67	1154.9	621.92	853.632	239.54	136.73	28.468		4476.963
						Deodar	67	35	84	109	120	53	21	1	2	1	493	
						Volume in m3	11.926	17.01	87.276	198.816	342.6	218.678	118.398	7.39	18.768	11.618		1032.48
						Kail	5	7	6	13	18	9	2	0	0	0	60	
						Volume in m3	0.76	2.961	5.784	23.075	51.39	37.845	11.648	0	0	0		133.463
						Mohru	124	186	237	135	98	35	45	4	0	3	867	
						Volume in m3	16.616	55.8	237	243	294	161	283.5	32	0	36.6		1359.516

								APPEN	DIX-X									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Walnut	4	16	28	39	36	18	7	3	0	2	153	
						Volume in m3	0.316	3.2	22.4	58.5	90	68.4	35.7	21.6	0	22.6		322.716
						Taxus	226	114	49	19	3	0	1	0	0	0	412	
						Volume in m3	23.504	26.676	22.883	15.599	3.93	0	2.734	0	0	0		95.326
						Mapple	35	36	61	46	22	17	20	2	0	0	239	
						Volume in m3	4.095	7.2	42.7	59.8	46.2	56.1	100	13	0	0		329.095
						Other B.L. Species	174	192	204	163	75	72	35	10	2	12	939	
						Volume in m3	16.356	56.448	144.43	217.768	163.28	232.704	157.5	59.82	15.356	115.044		1178.703
		Total	·		89.6817		1006	1054	1652	1309	1214	693	483	162	31	46	7650	16632.104
		G. Tota	ıl		273.552		15922	11956	7850	5154	3962	3520	2342	1373	1040	536	53655	98365.819

	Gen	eral Abstra	ct of Fir/Sp	ruce Working	Circle Species	wise No. &	volume o	of Fir/Sp	ruce Wo	rking Circ	le PB-III	Area	
Sr. No.	Total Area enumerated in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
			V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
		Deodar	1199	975	321	198	337	399	412	158	42	12	4053
1	273.5517	Volume in m3	213.42	473.85	333.52	361.15	962.14	1646.3	2322.9	1167.62	394.13	139.42	8014.37
2	2/3.331/	Kail	67	147	268	359	342	289	130	64	28	10	1704
		Volume in m3	10.18	62.18	258.35	637.23	976.41	1215.3	757.12	493.63	276.42	123.01	4809.78

3	Walnut	4	16	28	39	36	18	7	3	0	2	153
	Volume in m3	0.316	3.2	22.4	58.5	90	68.4	35.7	21.6	0	22.6	322.72
4	Mohru	124	186	237	135	98	35	45	4	0	3	867
	Volume in m3	16.616	55.8	237	243	294	161	283.5	32	0	36.6	1359.52
	Spruce	8626	4565	3024	1845	1459	1263	800	541	365	302	22790
5	Volume in m3	1173.136	1958.385	3144.96	3632.805	4693.6	6042.2	5335.2	4799.75	4158.8	4298.67	39237.51

					API	PENDIX-X							
		Fir	4379	4864	2889	2017	1454	1312	837	561	592	195	19100
6		Volume in m3	595.54	2086.66	3004.56	3971.47	4677.5	6276.6	5582	4977.19	6745.3	2775.63	40692.38
		Taxus	247	289	299	122	74	0	1	0	0	0	1032
7		Volume in m3	25.69	67.63	139.63	100.16	96.94	0	2.73	0	0	0	432.78
		Mapple	87	127	61	97	63	17	20	2	0	0	474
8		Volume in m3	10.18	25.4	42.7	126.1	132.3	56.1	100	13	0	0	505.78
9		Other B.L. Species	1189	787	723	342	99	187	90	40	13	12	3482
		Volume in m3	111.766	231.378	511.884	456.912	215.52	604.38	405	239.28	99.814	115.044	2990.99
	Total Trees	=	15922	11956	7850	5154	3962	3520	2342	1373	1040	536	53655
	Total volum	e =	2156.85	4964.48	7695.01	9587.33	12138	16070	14824	11744.1	11674	7510.97	98365.82

							Enumerati	on Resul	t of Fir/S _]	pruce Wo	rking Cir	cle PB-IV	7						
0	Sr. No.	Name of Range	Name of Block	Name of Beat	Name of Forest	Area enumerated in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Number	Volume

							V	IV	III	IIA	IIB	IA	IB	IC	ID	IE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Sarahan	Jaghori	Kut	NDPF C-73 Rupinsungel	395.353	Spruce	204	1692	1378	280	118	27	119	19	70	0	3907	
						Volume in m3	27.744	725.87	1433.1	551.32	379.61	129.168	793.611	168.57	797.58	0		5006.585
						Fir	0	17	249	27	16	144	123	0	1	0	577	
						Volume in m3	0	7.293	258.96	53.163	51.472	688.896	820.287	0	11.394	0		1891.465
						Ban	0	5	1	114	152	114	6	0	0	0	392	
						Volume in m3	0	1.565	0.657	136.914	300.05	341.544	25.71	0	0	0		806.438
						Other B.L. Species	4	122	204	178	197	46	11	0	1	0	763	
						Volume in m3	0.376	35.868	144.43	238	429	149	50	0	8	0		1053.203
		Total			395.353		208	1836	1832	599	483	331	259	19	72	0	5639	8757.691

								APPEN	DIX-X									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2	Rampur	Deothi	Munish	NDPF C-48 Thala	36.3214	Spruce	119	213	285	405	283	379	276	216	118	56	2350	
						Volume in m3	16.184	91.377	296.4	797.445	910.41	1813.14	1840.644	1916.4	1344.5	797.104		9823.545
						Fir	19	16	53	147	73	131	65	47	15	7	573	
						Volume in m3	2.584	6.864	55.12	289.443	234.84	626.704	433.485	416.98	170.91	99.638		2336.573
						Deodar	0	1	0	2	2	0	1	0	0	0	6	
						Volume in m3	0	0.486	0	3.648	5.71	0	5.638	0	0	0		15.482

				Kail	47	58	48	45	17	8	8	5	1	1	238	
				Volume in m3	7.144	24.534	46.272	79.875	48.535	33.64	46.592	38.565	9.872	12.301		347.33
				Ban	20	30	42	15	11	10	0	0	0	0	128	
				Volume in m3	2.68	9.39	27.594	18.015	21.714	29.96	0	0	0	0		109.353
				Taxus	19	36	34	28	11	0	0	0	0	0	128	
				Volume in m3	1.976	8.424	15.878	22.988	14.41	0	0	0	0	0		63.676
				Mohru	36	96	36	40	15	10	6	7	3	2	251	
				Volume in m3	4.824	28.8	36	72	45	46	37.8	56	28.8	24.4		379.624
				Other BL	35	62	40	20	15	11	21	13	0	0	217	
				Volume in m3	3.29	18.228	28.32	26.72	32.655	35.552	94.5	77.766	0	0		317.031
	Total	·	36.3214		295	512	538	702	427	549	377	288	137	66	3891	13392.614
	G. Tota	al	431.674		503	2348	2370	1301	910	880	636	307	209	66	9530	22150.305

	G	eneral Abs	tract of Fir	Spruce Worki	ng Circle Spec	eies wise No	. & volun	ne of Fir	Spruce V	Vorking C	ircle PB-	IV	
Sr. No.	Total Area enumerated	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
110.	in Ha.		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
		Deodar	0	1	0	2	2	0	1	0	0	0	6
1	421 6744	Volume in m3	0	0.49	0	3.65	5.71	0	5.64	0	0	0	15.48
	431.6744	Spruce	323	1905	1663	685	401	406	395	235	188	56	6257
2		Volume in m3	43.93	817.25	1729.52	1348.77	1290	1942.3	2634.3	2084.92	2142.1	797.1	14830.13

1	2	3	4	5	6	7	8	9	10	11	12	13	14
		Fir	19	33	302	174	89	275	188	47	16	7	1150
3		Volume in m3	2.58	14.16	314.08	342.61	286.31	1315.6	1253.8	416.98	182.3	99.64	4228.04
		Taxus	19	36	34	28	11	0	0	0	0	0	128
4		Volume in m3	1.98	8.42	15.88	22.99	14.41	0	0	0	0	0	63.68
		Mohru	36	96	36	40	15	10	6	7	3	2	251
5		Volume in m3	4.82	28.8	36	72	45	46	37.8	56	28.8	24.4	379.62
		Ban	20	35	43	129	163	124	6	0	0	0	520
6		Volume in m3	2.68	10.96	28.25	154.93	321.76	371.5	25.71	0	0	0	915.79
		Kail	47	58	48	45	17	8	8	5	1	1	238
7		Volume in m3	7.14	24.53	46.27	79.88	48.54	33.64	46.59	38.57	9.87	12.3	347.33
8		Other B.L. Species	39	184	244	198	212	57	32	13	1	0	980
		Volume in m3	3.67	54.1	172.75	264.53	461.52	184.22	144	77.77	7.68	0	1370.23
	Total Trees	; =	503	2348	2370	1301	910	880	636	307	209	66	9530
	Total volum	e =	66.8	958.7	2342.75	2289.34	2473.3	3893.3	4147.8	2674.24	2370.7	933.44	22150.31

APPENDIX-XI

					Enu	meratio	n Res	ult of E	Ban/Oa	ak Wor	king C	Circle						
Sr. No.	Name of Range	Name of	Name of Beat	Name of	Area in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Number	Volume
		Block		Forest			V	IV	Ш	IIA	IIB	IA	IB	IC	ID	ΙE		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	Nankhari	Gahan	Addu	UPF-C- 31 Chitrali (UF- Jathral old no.)	16.20	Deodar	0	1	0	0	0	0	0	0	0	0	1	
						Volume in m3	0	0.486	0	0	0	0	0	0	0	0		0.486
						Kail	159	57	55	22	13	10	5	1	1	0	323	
						Volume in m3	24.16 8	24.11 1	53.02	39.05	37.11 5	42.05	29.12	7.71 3	9.87 2	0		266.21 9
						Spruce	12	4	3	2	2	1	2	8	1	0	35	
						Volume in m3	1.632	1.716	3.12	3.938	6.434	4.784	13.33 8	70.9 76	11.3 94	0		117.33 2
						Chil	8	4	6	6	5	8	2	1	0	0	40	
						Volume in m3	0.712	1.312	4.65	8.868	12.35	30.31	10.93 2	7.53 1	0	0		76.667
						Ban	628	122	59	61	47	58	42	40	20	50	1127	
						Volume in m3	84.15 2	38.18 6	38.76 3	73.26 1	92.77 8	173.7 68	179.9 7	234. 28	154. 46	494.7		1564.3 18
						Mapple	19	5	4	2	1	0	0	0	0	0	31	
						Volume in m3	2.223	1	2.8	2.6	2.1	0	0	0	0	0		10.723
						Other B.L. Species	2825	369	141	77	37	9	8	4	5	12	3487	

						Volume in m3	265.5 5	108.4 86	99.82 8	102.8 72	80.54 9	29.08 8	36	23.9 28	38.3 9	115.0 44		899.73 5
				Total =	16.2		3651	562	268	170	105	86	59	54	27	62	5044	2935.4 8
2	Bahli	Surad	Beaunthal	UPF-50 Shingral	37.66	Kail	0	0	0	0	8	13	16	0	0	0	37	
						Volume in m3	0	0	0	0	22.84	54.66 5	93.18 4	0	0	0		170.68 9
						Chil	127	122	369	92	74	67	31	0	0	0	882	
						Volume in m3	11.30	40.01 6	285.9 75	135.9 76	182.7 8	253.8 63	169.4 46	0	0	0		1079.3 59
						Ban	209	201	344	340	296	203	110	90	60	0	1853	
						Volume in m3	28.00 6	62.91	226.0 08	408.3 4	584.3 04	608.1 88	471.3 5	527. 13	463. 38	0		3379.6 19

								APPEN	DIX-XI									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
						Other B.L. Species	159	74	64	68	31	35	21	5	0	0	457	
						Volume in m3	14.94 6	21.75 6	45.31 2	90.84 8	67.48 7	113.1 2	94.5	29.9 1	0	0		477.87 9
				Total	37.66		495	397	777	500	409	318	178	95	60	0	3229	5107.5 46
				G. Total	53.86		4146	959	1045	670	514	404	237	149	87	62	8273	8043.0

	Genera	al Abstract	of Ban/Oak	Working (Circle Sp	ecies wise	No. & vo	olume of	Ban/Oak	Working	g Circle	Area	
Sr. No.	Total Area enumerated in Ha.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90- 100	100 over	Total
			V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
1	53.86	Deodar	0	1	0	0	0	0	0	0	0	0	1

	Volume in m3	0	0.49	0	0	0	0	0	0	0	0	0.49
2	Kail	159	57	55	22	21	23	21	1	1	0	360
	Volume in m3	24.17	24.11	53.02	39.05	59.96	96.72	122.3	7.71	9.87	0	436.9 1
3	Spruce	12	4	3	2	2	1	2	8	1	0	35
	Volume in m3	1.63	1.72	3.12	3.94	6.43	4.78	13.34	70.98	11.39	0	117.3 3
4	Chil	135	126	375	98	79	75	33	1	0	0	922
	Volume in m3	12.02	41.33	290.6 3	144.84	195.1 3	284.1 8	180.3 8	7.53	0	0	1156. 03
5	Ban	837	323	403	401	343	261	152	130	80	50	2980
	Volume in m3	112.16	101.1	264.7 7	481.6	677.0 8	781.9 6	651.3 2	761.4 1	617.8 4	494.7	4943. 94
6	Mapple	19	5	4	2	1	0	0	0	0	0	31
	Volume in m3	2.22	1	2.8	2.6	2.1	0	0	0	0	0	10.72
7	Other B.L. Species	2984	443	205	145	68	44	29	9	5	12	3944
	Volume in m3	280.5	130.24	145.1 4	193.72	148.0 4	142.2 1	130.5	53.84	38.39	115.0 4	1377. 61
	Total Trees =	4146	959	1045	670	514	404	237	149	87	62	8273
	Total volume :	432.69	299.98	759.4 8	865.75	1088. 74	1309. 84	1097. 84	901.4 7	677.5	609.7 4	8043. 03

Appendix-XII

	Species wise	No. and Vo	olume in cu	bic mts.(E	stimated gr	owing stocl	k) for Chil	Working C	Circle P.B	I Area= 93	5.2116 ha.	
Sr. No.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100 over	Total
		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Chil	20233	14004	12119	13279	7983	4395	3257	766	458	94	76589
	Volume in m3	1800.72	4593.46	9391.95	19626.9 9	19717.2 2	16653.3	17802.4	5771.29	4588.96	1215.06	101161. 36
2	Deodar	1116	413	4	19	11	8	8	0	0	0	1578
	Volume in m3	198.59	200.83	3.9	34.26	32.17	31	42.36	0	0	0	543.12
3	Kail	1540	811	368	240	34	11	4	0	0	0	3009
	Volume in m3	234.11	343.23	354.89	426.74	96.52	47.39	21.88	0	0	0	1524.76
4	Ban	19	105	274	120	94	64	53	11	0	4	744
	Volume in m3	2.52	32.92	180.17	144.37	185.39	191.33	225.36	66.01	0	37.17	1065.22
5	Mohru	26	0	0	0	0	0	0	0	0	0	26
	Volume in m3	3.52	0	0	0	0	0	0	0	0	0	3.52
6	Other B.L Species	473	402	282	180	113	83	49	38	41	23	1683
	Volume in m3	44.49	118.17	199.47	240.9	245.34	267.11	219.76	224.72	317.27	216.08	2093.32
	Total trees	23407	15736	13047	13839	8234	4560	3370	815	500	120	83628
	Total Volume m3	2283.96	5288.61	10130.3 9	20473.2 7	20276.6	17190.1 3	18311.7 5	6062.01	4906.23	1468.31	106391. 3
	Species wise	No. and Vo	lume in cu	bic mts.(Es	timated gro	owing stock	(a) for Chil	Working C	ircle P.Bl	I Area= 87	0.5118 ha.	
1	Chil	16439	12369	16945	15565	15154	7586	4667	471	177	82	89456
	Volume in m3	1463.06	4057.08	13132.2 8	23005.4	37431.3 2	28742.7 4	25507.3 4	3550.2	1775.51	1063.15	139728. 11
2	Kail	1514	908	195	0	0	0	0	0	0	0	2617
	Volume in m3	230.08	384.18	187.61	0	0	0	0	0	0	0	801.88
3	Deodar	3828	1254	0	0	0	0	0	0	0	0	5082
	Volume in m3	681.3	609.55	0	0	0	0	0	0	0	0	1290.85

	Total trees	21780	14532	17139	15565	15154	7586	4667	471	177	82	97154
	Total Volume in m3	2374.44	5050.81	13319.8 9	23005.4	37431.3	28742.7 4	25507.3 4	3550.2	1775.51	1063.15	141820. 83
	Species wise N	o. and Vol	ume in cub	oic mts.(Est	imated gro	wing stock)	for Chil V	Vorking Ci	rcle P.BII	I Area= 100	60.0186 ha.	
1	Chil	16600	17782	16370	7836	4136	1458	788	628	113	5	65715
	Volume in m3	1477.4	5832.39	12686.9 2	11581.2 5	10215.7 5	5525.73	4306.09	4732.19	1126.89	60.67	57545.2 7
2	Ban	3883	2701	1819	1041	816	117	94	84	56	0	10612
	Volume in m3	520.28	845.42	1195.37	1250.26	1610.65	351.23	401.87	494.37	434.58	0	7104.03
3	Poplar	70	38	127	230	263	192	174	0	0	0	1093
	Volume in m3	6.612	11.029	89.64	306.978	571.677	621.384	780.762	0	0	0	2388.08
4	Kail	9	0	0	0	0	0	0	0	0	0	9
	Volume in m3	1.43	0	0	0	0	0	0	0	0	0	1.43
5	Brass	52	66	14	0	0	0	0	0	0	0	131
	Volume in m3	4.85	19.3	9.96	0	0	0	0	0	0	0	34.11
6	Other B.L Species	3512	2387	1702	1121	830	103	70	80	38	9	9852
	Volume in m3	330.152	701.729	1205.15 9	1497.3	1806.90 9	333.425	316.525	476.87	288.033	89.912	7046.01 6
	Total trees	24126	22973	20033	10227	6044	1871	1125	792	206	14	87413
	Total Volume in m3	2340.72	7409.87	15187.0 45	14635.7 89	14204.9 82	6831.76 3	5805.25 1	5703.42 8	1849.50 1	150.582	74118.9 3
	Species wise N	o. and Vol	ume in cub	oic mts.(Est	imated gro	wing stock)	for Chil V	Vorking Ci	rcle P.BIV	V Area= 105	58.0045 ha.	
1	Chil	20860	20617	10430	3326	1861	1005	534	243	101	37	59014
	Volume in m3	1856.51 6	6762.32 1	8083.14 7	4915.67 8	4596.69	3808.86 7	2920.95 3	1829.3	1010.29	483.488	36267.2 54
2	Deodar	56	26	0	4	0	0	0	0	0	0	86
	Volume in m3	9.978	12.713	0	6.816	0	0	0	0	0	0	29.507
3	Kail	785	691	419	52	30	7	11	0	4	0	1999
	Volume in m3	119.284	292.436	403.473	92.864	85.352	31.428	65.292	0	36.891	0	1127.02
4	Spruce	0	0	15	4	4	4	4	0	7	0	37

	Volume in m3	0	0	15.546	7.358	12.022	17.878	24.922	0	85.158	0	162.883
5	Ban	3008	3419	2100	1618	867	516	845	508	206	359	13446
	Volume in m3	403.106	1070.24	1379.81	1943.34	1711.41	1545.04	3618.91	2976.68	1587.33	3549.45	19785.3
			8	4	5			4	6	2	8	5
	Brass	1570	1162	478	220	56	26	22	11	7	11	3565
6	(Rhododendron)											
	Volume in m3	147.535	341.686	338.659	294.562	122.031	84.545	100.898	67.064	57.385	107.479	1661.84
7	Shisham	101	11	4	0	4	4	0	0	0	0	123
	Volume in m3	9.484	3.296	2.646	0	8.135	12.078	0	0	0	0	35.64
8	Other B.L. Species	5273	3229	1073	471	135	67	60	37	26	15	10385
	Volume in m3	495.649	949.249	759.336	629.066	292.873	217.402	269.061	223.545	200.847	143.305	4180.33
	Total trees	31652	29156	14518	5695	2956	1629	1476	800	351	422	88656
	Total volume in m3	3041.55	9431.94	10982.6	7889.68	6828.51	5717.23	7000.04	5096.59	2977.90	4283.73	63249.8
		3	9	21	8	4	8	1	5	5	1	34

Appendix-XIII

	\$	Species wise No.	and Volume in	n cubic mts.(I	Estimated gro	wing stock) fo	r Deo/Kail W	orking Circle	P.BI Area=	2590.1439 ha	•	
Sr. No.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100 over	Total
		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Deodar	17496	24409	13119	11590	7096	4494	2569	1157	445	295	82669
	Volume in m3	3114.29	11862.66	13630.8	21139.8	20259.89	18540.4	14485.9	8548.46	4175.01	3424.42	119181.9
			33	78	99	27	78	64	48	79	45	7
2	Kail	96551	66764	43657	36755	19087	13264	9260	5450	2564	1529	294880
	Volume in m3	14675.7	28241.18	42084.9	65240.0	54492.13	55774.3	53928.2	42036.8	25309.6	18812.8	400595.9
				7	8		8		1	7		1
3	Chil	44	0	0	17	11	17	0	0	0	0	89
	Volume in m3	3.96	0	0	24.66	27.47	63.22	0	0	0	0	119.31
4	Spruce	59996	38295	27278	26055	11023	9399	7886	5261	2681	2797	190671
	Volume in m3	8159.44	16428.76	28369.5	51302.1	35459.7	44963.3	52591.7	46675.9	30542.4	39817.6	354310.6
				7	6		1	1	3	3	2	2
5	Fir	712	273	1791	1335	1235	1296	706	706	122	256	8431
	Volume in m3	96.81	116.91	1862.39	2628.07	3971.77	6199.08	4710.26	6266.22	1394.05	3641.37	30886.93
6	Ban	15310	16740	14448	14693	5072	5667	3520	2586	1073	339	79449
	Volume in m3	2051.59	5239.52	9492.59	17646.4	10012.03	16978.3	15084.6	15146.3	8289.41	3356.46	103297.4
							8	4	7			1
7	Mohru	2909	2770	990	345	122	44	44	6	11	22	7263
	Volume in m3	389.75	830.87	989.92	620.65	367.05	204.66	280.29	44.49	106.78	271.39	4105.85
8	Walnut	89	156	378	495	184	228	161	100	39	50	1880
	Volume in m3	7.03	31.14	302.54	742.44	458.81	866.46	822.52	720.75	346.47	565.59	4863.76
9	Mapple	6	6	6	6	6	0	0	0	0	0	28
	Volume in m3	0.65	1.11	3.89	7.23	11.68	0	0	0	0	0	24.56
10	Taxus	2686	2597	918	545	423	395	417	56	28	11	8075
-	Volume in m3	279.36	607.73	428.53	447.46	553.69	767.99	1140.36	204.94	133.56	67.78	4631.39

11	Brass	701	601	267	56	6	0	0	0	0	0	1629
	Volume in m3	65.87	176.58	189	74.3	12.11	0	0	0	0	0	517.86
12	Kunish	145	267	150	17	11	0	11	0	0	0	601
	Volume in m3	13.59	78.48	106.31	22.29	24.21	0	50.05	0	0	0	294.94
13	Tooni	0	0	0	6	0	0	0	0	0	0	6
	Volume in m3	0	0	0	7.43	0	0	0	0	0	0	7.43
14	Kainth	6	6	0	0	0	0	0	0	0	0	11
	Volume in m3	0.52	1.64	0	0	0	0	0	0	0	0	2.16
15	Poplar	150	217	178	33	6	11	11	11	0	0	617
	Volume in m3	14.11	63.77	126	44.58	12.11	35.95	50.05	66.54	0	0	413.1
16	Khanor	33	44	72	117	273	261	261	311	195	61	1629
	Volume in m3	3.14	13.08	51.19	156.03	593.25	844.79	1176.23	1863.01	1494.5	586.48	6781.69
17	Jamun	200	506	439	139	56	11	6	6	0	0	1363
	Volume in m3	18.82	148.79	311.06	185.75	121.07	35.95	25.03	33.27	0	0	879.73
18	Other B.L Species	25232	25143	19359	13180	4955	2853	2736	1852	1157	634	97101
	Volume in m3	2371.79	7392	13706.2	17609.0 2	10787.39	9220.81	12312.8 3	11078.2 5	8881.61	6078.1	99438.03
	Total trees	222265	178792	123050	105382	49563	37940	27590	17502	8314	5995	776392
	Total Volume m3	31266.4 2	71234.22	111655. 04	177898. 44	137164.3 6	154495. 45	156658. 14	132685. 03	80673.5	76622.0 3	1130352. 65
	Species wise N	No. and Vol	ume in cubi	ic mts.(Esti	mated grow	ing stock) f	or Deo/Kai	l Working	Circle P.B	II Area= 26	61.4552 ha	,
1	Chil	804	225	107	139	0	0	11	11	11	0	1308
	Volume in m3	71.56	73.84	83.08	205.98	0	0	58.6	80.74	107.34	0	681.14
2	Kail	93525	60646	51051	78624	53656	30049	33158	18600	20154	5703	445166
	Volume in m3	14215.8	25653.05	49212.8 9	139557. 02	153187.2 4	126357. 64	193113. 97	143461. 45	198964. 41	70155.9 4	1113879. 42
3	Deodar	52777	28463	38347	26329	28892	22095	12286	9273	665	300	219426
	Volume in m3	9394.25	13832.9	39842.5 3	48024.8	82485.44	91163.2	69266.3	68528.7 7	6237.23	3487.4	432262.8
4	Mohru	1801	4009	4320	2166	2434	75	32	0	0	0	14837
	Volume in m3	241.34	1202.83	4320.34	3897.95	7300.62	345.2	202.62	0	0	0	17510.89
5	Spruce	10163	16145	12682	23971	13733	3838	1705	161	750	482	83630

	Volume in m3	1382.16	6926.19	13189.5	47198.6	44178.67	18360.5	11367.6 4	1426.68	8550.4	6866.76	159447.3
6	Ban	8898	11139	9005	13797	5800	10324	12607	7858	9305	4621	93354
	Volume in m3	1192.33	3486.36	5916.39	16570.4 4	11448.72	30930.0 4	54021.9 9	46024.7 7	71865.1 2	45715.3	287171.4 56
7	Other B.L. Species	4395	3195	4846	3120	2980	3731	1211	322	332	161	24293
	Volume in m3	413.17	939.24	3430.71	4167.85	6488.07	12057.6 6	5451.34	1923.89	2551.66	1541.65	38965.23 29
	Total trees	172363	123821	120358	148146	107494	70112	61010	36224	31218	11267	882013
	Total Volume in m3	26910.6 2	52114.41	115995. 5	259622. 72	305088.7 5	279214. 34	333482. 47	261446. 29	288276. 18	127767. 06	2049918. 35
	Species wise N	o. and Volu	ıme in cubi	c mts.(Estin	nated grow	ing stock) fo	or Deo/Kail	Working (Circle P.Bl	III Area= 28	320.5258 ha	•
1	Ban	440	616	2726	809	440	176	0	0	0	0	5206
	Volume in m3	58.92	192.67	1791.03	971.65	867.95	526.92	0	0	0	0	4409.14
2	Deodar	111171	107777	42263	30620	13261	7826	4432	915	176	88	318529
	Volume in m3	19788.4 94	52379.57 5	43911.2 97	55850.9 48	37860.33 1	32292.0 92	24988.0 61	6758.56 9	1650.42 2	1021.66	276501.4 54
3	Kail	26663	17025	24429	16972	5505	1812	704	1372	1530	299	96310
	Volume in m3	4052.75	7201.5	23549.7 5	30125.3 9	15716.56	7617.46	4097.21	10580.9 6	15105.3 7	3677.87	121724.8
4	Spruce	422	598	668	0	492	158	106	18	0	0	2462
	Volume in m3	57.41	256.53	695.06	0	1584.22	757.25	703.75	156.04	0	0	4210.264
5	Other B.L Species	211	475	827	633	0	0	0	0	0	0	2146
	Volume in m3	19.839	139.61	585.245	845.894	0	0	0	0	0	0	1590.589
	Total trees	138907	126490	70913	49034	19698	9972	5241	2304	1706	387	424653
	Total Volume in m3	23977.4 06	60169.88	70532.3 86	87793.8 74	56029.05 8	41193.7 29	29789.0 23	17495.5 61	16755.7 91	4699.53	408436.2
	Species wise N					Ü					517.1253 ha.	<u> </u>
1	Deodar	136960	149920	51898	43492	15439	4660	2348	889	224	15	405845
1	Volume in m3	24378.9 7	72860.94	53921.6	79329.3	44078.86	19228.0	13237.4	6572.32	2098.35	177.13	315882.9 5
2	Spruce	33485	19078	11394	11846	3242	2699	1560	1149	910	0	85363
	Volume in m3	4554.02	8184.42	11849.6 5	23325.1	10430.57	12909.8 8	10404.8 4	10189.8	10364.9	0	102213.2 8

3	Fir	5	10	46	30	51	25	0	5	0	0	173
	Volume in m3	0.69	4.36	47.57	60.04	163.49	121.56	0	45.09	0	0	442.8
4	Ban	1758	2195	6225	1204	1575	1016	767	356	910	915	16923
	Volume in m3	235.62	687.17	4090.14	1446.53	3109.89	3045.15	3288.25	2083.58	7025.47	9050.67	34062.47
5	Kail	83930	64567	31920	13091	11313	9224	5976	2765	1398	198	224381
	Volume in m3	12757.3	27311.88	30771.0 5	23237.0 4	32297.42	38786.3 7	34806.8 9	21323.5 1	13796.6 7	2438.04	237526.1
6	Birdcherry	0	0	0	5	10	5	0	0	0	0	20
	Volume in m3	0	0	0	7.11	22.36	16.26	0	0	0	0	45.74
7	Walnut	5	0	5	0	5	5	0	0	0	0	20
	Volume in m3	0.4	0	4.07	0	12.71	19.31	0	0	0	0	36.48
8	Chil	0	650	4543	5600	2561	1616	915	269	203	0	16359
	Volume in m3	0	213.36	3521.08	8277.37	6326.51	6123.34	5000.1	2028.45	2035.45	0	33525.66
9	Other B.L. Species	8411	3949	1499	10	0	0	0	0	0	0	13869
	Volume in m3	790.61	1160.93	1061.43	13.58	0	0	0	0	0	0	3026.55
	Total Trees	264555	240369	107530	75280	34197	19251	11567	5433	3644	1128	762954
	Total volume	42717.6 1	110423.0 6	105266. 59	135696. 13	96441.81	80249.9 1	66737.5	42242.7 7	35320.8 6	11665.8 5	726762.1

Appendix-XIV

Sr. No.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100 over	Total
110.		V	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Deodar	16090	16332	8841	5735	4178	4957	4066	1306	1021	536	63063
	Volume in m3	2864.0	7937.5	9185.69	10461.2 5	11928.8 5	20451.6	22922.8	9653.1	9578.89	6231.15	111214.98
2	Kail	17526	8901	4377	2907	2543	2206	1514	856	441	234	41505
	Volume in m3	2663.9 6	3765.3 1	4219.62	5159.21	7261.04	9275.8	8816.67	6605.47	4355.33	2873.09	54995.5
3	Fir	53071	23625	14481	10952	11618	5606	4490	4118	2310	320	130589
	Volume in m3	7217.7	10135. 01	15060.3 2	21563.7 7	37374.2 4	26817.0 8	29941.4 9	36532.0 3	26316.7 8	4555.9	215514.32
4	Spruce	94464	60779	38339	28737	23979	18011	17362	12310	10502	1237	305720
	Volume in m3	12847. 15	26074. 19	39872.9 5	56583.6 1	77141.7 7	86162.2 8	115785. 29	109212. 35	119657. 58	17607.9 3	660945.1
5	Ban	441	260	190	285	242	398	199	112	52	251	2431
	Volume in m3	59.12	81.23	125.04	342.85	478.13	1192.19	852.56	658.66	400.85	2482.08	6672.7
6	Kharsu	4135	1419	882	277	69	26	26	9	9	0	6851
	Volume in m3	554.09	425.61	882.36	498.27	207.61	119.38	163.5	69.2	83.05	0	3003.07
7	Walnut	1107	969	856	588	320	251	121	61	69	17	4360
	Volume in m3	87.47	193.77	685.13	882.36	800.18	953.29	617.65	435.99	615.92	195.5	5467.27
8	Mohru	4282	3313	2033	1574	727	640	450	311	61	138	13530
	Volume in m3	573.79	993.95	2032.89	2833.93	2179.95	2944.66	2833.93	2491.37	581.32	1688.59	19154.38
9	Mapple	12786	4931	2699	1747	1029	822	389	121	69	35	24628
	Volume in m3	1495.9 1	986.17	1889.29	2271.64	2161.78	2711.96	1946.38	787.2	588.24	387.55	15993.247 19
10	Taxus	1791	934	571	424	234	95	52	9	9	0	4118
	Volume in m3	186.23	218.62	266.63	348	305.97	185.08	141.9	31.88	41.55	0	1725.86

11	Other B.L. Species	47596	21756	11324	4896	2318	1462	1324	761	545	52	92034
	Volume in m3	4473.9 8	6396.3 3	8017.12	6541.36	5047.06	4725.02	5955.93	4553.8	4184.41	497.6	50392.6
	Total Trees	253289	143219	84594	58123	47258	34473	29992	19974	15087	2820	688829
	Total volume	33023.	57207.	82237.0	107486.	144886.	155538.	189978.	171031.	166403.	36519.3	1144311.8
		44	68	1	26	58	43	13	06	91	9	9
	Species wise No. a	and Volum	e in cubic	mts.(Estin	nated grow	ing stock)	for Fir/Sp	ruceWorki	ing Circle	P.BII Are	ea= 3185.77	'82 ha.
1	Deodar	3537	2025	1159	969	1189	602	249	220	29	59	10039
	Volume in m3	629.58	984.31	1204.64	1766.79	3393.96	2482.73	1406.66	1626.86	275.44	682.04	14453.02
2	Kail	15278	9862	14397	14574	13840	5283	3155	2040	205	117	78753
	Volume in m3	2322.2	4171.8	13879.1	25868.0	39512.4	22216.9	18377.0	15734.5	2028.38	1444.26	145555
		6	2	1	3	1	4	4	3			
3	Spruce	59776	86106	25008	36192	31539	22352	15131	7397	6149	2803	292454
	Volume in m3	8129.6	36939.	26008.7	71261.4	101461.	106931.	100910.	65624.7	70065.7	39900.2	627234
			34		3	95	78	21	7	8	9	
4	Fir	79355	58602	17964	43706	24553	10185	7470	4828	4535	1717	252916
	Volume in m3	10792.	25140.	18682.3	86056.9	78988.2	48726.6	49818.9	42838.3	51671.4	24441.5	437157
	-	23	41	1	9	9	3	1	9	2	4	5540
5	Ban	2994	1835	646	440	264	220	161	29	0	59	6648
	Volume in m3	401.19	574.21	424.26	528.79	521.48	659.55	691.77	171.92	0	580.83	4554
6	Kharsu	5283	1761	704	279	29	0	0	0	0	0	8057
	Volume in m3	707.98	528.35	704.46	501.93	88.06	0	0	0	0	0	2531
7	Mohru	9995	4887	2378	1145	895	528	294	132	44	44	20341
	Volume in m3	1339.2 7	1466.1 6	2377.56	2060.55	2685.76	2430.39	1849.21	1056.69	422.68	537.15	16225
8	Taxus	2436	1541	323	132	88	0	0	15	0	0	4535
	Volume in m3	253.37	360.6	150.78	108.44	115.36	0	0	54.08	0	0	1043
9	Walnut	660	264	411	161	235	103	0	103	0	0	1937
	Volume in m3	52.17	52.83	328.75	242.16	587.05	390.39	0	739.68	0	0	2393
10	Other B.L. Species	65412	77197	33403	17538	7896	4667	3170	2656	2260	0	214200
	Volume in m3	6148.7 4	22695. 97	23649.4	23430.9 6	17189.2 3	15083.9 2	14265.3 4	15890.6 2	17353.4	0	155708
	Total trees	244727	244082	96394	115135	80529	43941	29631	17420	13223	4799	889881

		30776.	92913.	87410.0	211826.	244543.	198922.	187319.	143737.	141817.	67586.1	1406852.2
	Total Volume in m3	39	99	4	06	54	33	14	55	1	1	6
	Species wise No. as	nd Volum	e in cubic 1	nts.(Estim	ated growi	ng stock) f	or Fir/Spr	uce Worki	ng Circle l	P.BIII Ar	ea= 4072.2	853 ha.
1	Deodar	17849	14515	4779	2948	5017	5940	6133	2352	625	179	60336
	Volume in m3	3177.1	7054.0	4965	5376.37	14323.0	24507.6	34579.6	17382.0	5867.27	2075.45	119307.65
		5	7			3	1	9	2			
2	Kail	997	2188	3990	5344	5091	4302	1935	953	417	149	25367
	Volume in m3	151.61	925.67	3846.01	9486.18	14535.5 3	18091	11271.0 3	7348.56	4114.93	1831.21	71601.73
3	Fir	65189	72409	43008	30026	21645	19531	12460	8351	8813	2903	284336
	Volume in m3	8865.6	31063.	44728.0	59122.1	69632.8	93438.0	83096.9	74094.0	100414.	41320	605775.76
		9	45	2	7	6	5	3	2	56		
4	Spruce	128413	67958	45017	27466	21720	18802	11909	8054	5434	4496	339268
	Volume in m3	17464.	29153.	46818.1	54080.5	69872.3	89948.3	79423.5	71452.5	61911.0	63993.0	584117.52
	XX 1	14	91	1	2	1	7	8	2	1	3	2270
5	Walnut	60	238	417	581	536	268	104	45	0	30	2278
	Volume in m3	4.7	47.64	333.46	870.87	1339.8	1018.25	531.46	321.55	0	336.44	4804.18
6	Mohru	1846	2769	3528	2010	1459	521	670	60	0	45	12907
	Volume in m3	247.36	830.68	3528.15	3617.47	4376.69	2396.76	4220.38	476.37	0	544.85	20238.72
7	Taxus	3677	4302	4451	1816	1102	0	15	0	0	0	15363
	Volume in m3	382.41	1006.7	2078.68	1491.08	1443.12	0	40.7	0	0	0	6442.72
8	Mapple	1295	1891	908	1444	938	253	298	30	0	0	7056
	Volume in m3	151.53	378.12	635.66	1877.21	1969.51	835.14	1488.67	193.53	0	0	7529.39
9	Other B.L. Species	17700	11716	10763	5091	1474	2784	1340	595	194	179	51836
	Volume in m3	1663.8	3444.4	7620.27	6801.92	3208.43	8997.29	6029.12	3562.09	1485.9	1712.63	44525.93
		3	6									
	Total Trees	237026	177986	116861	76726	58981	52401	34865	20439	15482	7979	798747
	Total volume	32108.	73904.	114553.	142723.	180701.	239232.	220681.	174830.	173793.	111813.	1464343.5 91
Species wise No. and Volume in cubic mts.(Estimated growing stock) for Fir/Spruce Working Circle P.BIV Area= 3103.7011 l												
			e in cubic i					uce Worki				
1	Deodar	0	7	0	14	14	0	7	0	0	0	43
	Volume in m3	0	3.49	0	26.23	41.05	0	40.54	0	0	0	111.31

2	Kail	338	417	345	324	122	58	58	36	7	7	1711
	Volume in m3	51.36	176.4	332.69	574.29	348.96	241.87	334.99	277.28	70.98	88.44	2497.27
3	Spruce	2322	13697	11957	4925	2883	2919	2840	1690	1352	403	44987
	Volume in m3	315.84	5875.9	12435.1	9697.5	9275.11	13965	18940.0	14990.3	15401.3	5731.11	106627.33
			2					6	9	1		
4	Fir	137	237	2171	1251	640	1977	1352	338	115	50	8268
	Volume in m3	18.58	101.79	2258.21	2463.31	2058.57	9459.05	9014.51	2998.08	1310.75	716.39	30399.22
5	Taxus	137	259	244	201	79	0	0	0	0	0	920
	Volume in m3	14.21	60.57	114.16	165.28	103.61	0	0	0	0	0	457.82
6	Mohru	259	690	259	288	108	72	43	50	22	14	1805
	Volume in m3	34.68	207.07	258.84	517.67	323.55	330.74	271.78	402.64	207.07	175.43	2729.46
7	Ban	144	252	309	927	1172	892	43	0	0	0	3739
	Volume in m3	19.27	78.77	203.12	1113.93	2313.44	2671.08	184.85	0	0	0	6584.46
8	Other B.L. Species	280	1323	1754	1424	1524	410	230	93	7	0	7046
	Volume in m3	26.36	388.95	1242.07	1901.93	3318.32	1324.55	1035.35	559.13	55.2	0	9851.86
	Total Trees	3617	16882	17040	9354	6543	6327	4573	2207	1503	475	68520
	Total volume	480.3	6892.9	16844.1	16460.1	17782.6	27992.2	29822.0	19227.5	17045.3	6711.37	159258.75
			5	9	5		8	8	2	1		

Appendix-XV

	Species wise	No. and	Volume in	cubic mts.	.(Estimate	ed growing	stock) for	Oak Wor	king Circ	ele Area=	911.3073	ha.
Sr.	Species	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100 over	Total
No.												
		${f V}$	IV	III	IIA	IIB	IA	IB	IC	ID	IE	
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Deodar	0	17	0	0	0	0	0	0	0	0	17
	Volume in m3	0	8	0	0	0	0	0	0	0	0	8.22
2	Kail	2690	964	931	372	355	389	355	17	17	0	6091
	Volume in m3	408.92	407.96	897.09	660.72	1014.43	1636.4 1	2069.3 7	130.5	167.03	0	7392.45
3	Spruce	203	68	51	34	34	17	34	135	17	0	592
	Volume in m3	27.61	29.03	52.79	66.63	108.86	80.94	225.68	1200.9 1	192.79	0	1985.25
4	Chil	2284	2132	6345	1658	1337	1269	558	17	0	0	15600
	Volume in m3	203.29	699.27	4917.3 5	2450.7 5	3301.59	4808.2 2	3051.9 8	127.42	0	0	19559.88
5	Ban	14162	5465	6819	6785	5804	4416	2572	2200	1354	846	50421
	Volume in m3	1897.7 1	1710.59	4479.9 1	8148.6 5	11456.1 8	13230. 64	11020. 29	12883	10453. 81	8370.2 9	83651
6	Mapple	321	85	68	34	17	0	0	0	0	0	525
	Volume in m3	37.61	16.92	47.38	43.99	35.53	0	0	0	0	0	181.43
7	Other B.L. Species	50489	7496	3469	2453	1151	744	491	152	85	203	66732
	Volume in m3	4745.9 7	2203.69	2455.7 6	3277.7	2504.76	2406.1	2208.0	910.94	649.56	1946.5 4	23309.13
	Total Trees	70150	16226	17681	11336	8697	6836	4010	2521	1472	1049	139979
	Total volume	7321.1	5075.67	12850. 28	14648. 48	18421.3 5	22162. 36	18575. 37	15252. 77	11463. 18	10316. 82	136087.4

Appendix-XVI

				Statement	of past yie	eld remove	d in the Chi	l Workin	g Circle			
Sr. No.	Year	Species	Prescribe	d yield in M3	Total o		Yield r	emoved in I	M3	Exces	ss or deficit ir	n M3
		-	PB-I	PB-IV	PB-I	PB-IV	PB-I	PB-IV	Total	PB-I	PB-IV	Total
1	1993-94	Deo	0	0	0	0	37.687	0	37.687	37.687	0	37.687
		Kail	170	0	170	0	507.994	0	507.99 4	337.994	0	337.994
		Fir Spruce	0	0	0	0	238.437	0	238.43 7	238.437	0	238.437
		Chil	1030	100	1030	100	59.218	59.07	118.28 8	970.782	-40.93	1011.712
	Total =	=	1200	100	1200	100	843.336	59.07	902.40 6	356.664	-40.93	- 397.594
	B.L		0	0	0	0	0	0	0	0	0	0
2	1994-95	Deo	0	0	37.687	0	3.648	4.126	7.774	41.335	4.126	45.461
		Kail	170	0	167.994	0	89.924	5.98	95.904	257.918	5.98	263.898
		Fir Spruce	0	0	238.437	0	0	0	0	238.437	0	238.437
		Chil	1030	100	-	-140.93	31.686	226.9	258.62	-	86.011	-
					2000.782			41	7	1969.096		1883.085
	Total =	=	1200	100	- 1556.664	-140.93	125.258	237.0 47	362.30	- 1431.406	96.117	1335.289
	B.L		0	0	1330.004	0	0	0	5	1431.400	0	1333.269
3	1995-96	Deo	0	0	41.335	4.126	1.824	0	1.824	43.159	4.126	47.285
	1336 36	Kail	170	0	87.918	5.98	98.03	4.205	102.23	185.948	10.185	196.133
		Fir Spruce	0	0	238.437	0	0	0	0	238.437	0	238.437
		Chil	1030	100	- 2999.096	-13.989	28.546	254.8 11	283.35 7	2970.55	240.822	2729.728

	Total =	=	1200	100	-	-3.883	128.4	259.0	387.41		255.133	-
					2631.406			16	6	2503.006		2247.873
	B.L		0	0	0	0	0	0	0	0	0	0
4	1996-97	Deo	0	0	43.159	4.126	12	0	12	55.159	4.126	59.285
		Kail	170	0	15.948	10.185	34.105	11.30 5	45.41	50.053	21.49	71.543
		Fir Spruce	0	0	238.437	0	1.969	25.97 2	27.941	240.406	25.972	266.378
		Chil	1030	100	4000.55	140.822	65.335	19.80 2	85.137	3935.215	160.624	3774.591
	Total =	=	1200	100	-	155.133	113.409	57.07	170.48	_	212.212	-
					3703.006			9	8	3589.597		3377.385
	B.L		0	0	0	0	0	4.2	4.2	0	4.2	4.2
5	1997-98	Deo	0	0	55.159	4.126	1.824	0	1.824	56.983	4.126	61.109
		Kail	170	0	- 119.947	21.49	146.675	0	146.67 5	26.728	21.49	48.218
		Fir Spruce	0	0	240.406	25.972	0	0	0	240.406	25.972	266.378
		Chil	1030	100	4965.215	60.624	43.312	0	43.312	4921.903	60.624	4861.279
	Total =	=	1200	100	- 4789.597	112.212	191.811	0	191.81 1	- 4597.786	112.212	4485.574
	B.L		0	0	0	0	0	0	0	0	0	0
6	1998-99	Deo	0	0	56.983	4.126	1.824	0	1.824	58.807	4.126	62.933
		Kail	170	0	143.272	21.49	203.51	0	203.51	60.238	21.49	81.728
		Fir Spruce	0	0	240.406	25.972	3.938	0	3.938	244.344	25.972	270.316
		Chil	1030	100	5951.903	-39.376	12.012	0	12.012	5939.891	-39.376	- 5979.267
	Total =	=	1200	100	5797.786	12.212	221.284	0	221.28	5576.502	12.212	5564.29
	B.L		0	0	0	0	0	0	0	0	0	0

7	1999- 2000	Deo	0	0	58.807	4.126	24.278	0	24.278	83.085	4.126	87.211
		Kail	170	0	- 109.762	21.49	52.235	0	52.235	-57.527	21.49	-36.037
		Fir Spruce	0	0	244.344	25.972	4.784	0	4.784	249.128	25.972	275.1
		Chil	1030	100	- 6969.891	139.376	17.091	2.253	19.344	-6952.8	137.123	7089.923
	Total =	=	1200	100	- 6776.502	-87.788	98.388	2.253	100.64 1	- 6678.114	-85.535	- 6763.649
	B.L		0	0	0	0	0	0	0	0	0	0
8	2000-01	Deo	0	0	83.085	4.126	5.95	4.126	10.076	89.035	8.252	97.287
		Kail	170	0	- 227.527	21.49	111.567	0	111.56 7	-115.96	21.49	-94.47
		Fir Spruce	0	0	249.128	25.972	4.784	0	4.784	253.912	25.972	279.884
		Chil	1030	100	-7982.8	237.123	6.745	35.13 7	41.882	- 7976.055	201.986	- 8178.041
	Total =	=	1200	100	- 7878.114	185.535	129.046	39.26 3	168.30 9	- 7749.068	- 146.272	- 7895.34
	B.L		0	0	0	0	0	0	0	0	0	0
9	2001-02	Deo	0	0	89.035	8.252	11.67	0	11.67	100.705	8.252	108.957
		Kail	170	0	-285.96	21.49	118.018	3.55	121.56 8	- 167.942	25.04	142.902
		Fir Spruce	0	0	253.912	25.972	19.289	0	19.289	273.201	25.972	299.173
		Chil	1030	100	9006.055	301.986	410.804	32.95 2	443.75 6	- 8595.251	- 269.034	- 8864.285
1	2	3	4	5	6	7	8	9	10	11	12	13
	Total =	=	1200	100	- 8949.068	246.272	559.781	36.50 2	596.28 3	- 8389.287	-209.77	- 8599.057
	B.L		0	0	0	0	102.68	0	102.68	102.68	0	102.68
10	2002-03	Deo	0	0	100.705	8.252	12.378	0	12.378	113.083	8.252	121.335

		Kail	170	0	-	25.04	89.66	0	89.66	249.292	25.04	-
		г.	0	0	337.942	25.072	21 107	0	21 107	248.282	25.072	223.242
		Fir Spruce	0	0	273.201	25.972	21.105	0	21.105	294.306	25.972	320.278
		Chil	1030	100	-	-	76.63	0	76.63	-	-	-
					9625.251	369.034				9548.621	369.034	9917.655
	Total =	=	1200	100	-	-309.77	199.773	0	199.77	-	-309.77	-
					9589.287				3	9389.514		9699.284
	B.L		0	0	0	0	0	0	0	0	0	0
11	2003-04	Deo	0	0	113.083	8.252	8.252	4.126	12.378	121.335	12.378	133.713
		Kail	170	0	-	25.04	57.248	5.98	63.228	-	31.02	-
					418.282					361.034		330.014
		Fir Spruce	0	0	294.306	25.972	0	1.969	1.969	294.306	27.941	322.247
		Chil	1030	100	-	-	34.769	9.255	44.024	-	-	-
					10578.621	469.034				10543.852	459.779	11003.631
	Total =	=	1200	100	-	-409.77	100.269	21.33	121.59	-	-388.44	-
					10589.514				9	10489.245		10877.685
	B.L		0	0	0	0	0	0	0	0	0	0
12	2004-05	Deo	0	0	121.335	12.378	71.01	4.126	75.136	192.345	16.504	208.849
		Kail	170	0	-	31.02	90.08	1.775	91.855	-	32.795	-
					531.034					440.954		408.159
		Fir	0	0	294.306	27.941	4.784	4.784	9.568	299.09	32.725	331.815
		Spruce										
		Chil	1030	100	-	-	422.303	0	422.30	-	-	-
					11573.852	559.779			3	11151.549	559.779	11711.328
	Total =	=	1200	100	-	-488.44	588.177	10.68	598.86	-	-	-
					11689.245			5	2	11101.068	477.755	11578.823
	B.L		0	0	0	0	0	0	0	0	0	0
13	2005-06	Deo	0	0	192.345	16.504	0	0	0	192.345	16.504	208.849
		Kail	170	0	-	32.795	23.899	8.41	32.309	-	41.205	-545.85
					610.954					587.055		

		Fir Spruce	0	0	299.09	32.725	0	0	0	299.09	32.725	331.815
		Chil	1030	100	-	-	0	8.868	8.868	-	-	-
					12181.549	659.779				12181.549	650.911	12832.46
	Total =	=	1200	100	-	-	23.899	17.27	41.177	-	-	-
					12301.068	577.755		8		12277.169	560.477	12837.646
	B.L		0	0	0	0	0	0	0	0	0	0
1	2	3	4	5	6	7	8	9	10	11	12	13
14	2006-07	Deo	0	0	192.345	16.504	0	0	0	192.345	16.504	208.849
		Kail	170	0	-	41.205	5.824	0	5.824	-	41.205	-
					757.055					751.231		710.026
		Fir Spruce	0	0	299.09	32.725	0	0	0	299.09	32.725	331.815
		Chil	1030	100	-	-	0	0	0	-	-	-
					13211.549	750.911				13211.549	750.911	13962.46
	Total =		1200	100	-	-	5.824	0	5.824	-	-	-
					13477.169	660.477				13471.345	660.477	14131.822
	B.L		0	0	0	0	0	0	0	0	0	0
15	2007-08	Deo	0	0	192.345	16.504	0	0	0	192.345	16.504	208.849
		Kail	170	0	-	41.205	0	0	0	-	41.205	-
					921.231					921.231		880.026
		Fir Spruce	0	0	299.09	32.725	0	0	0	299.09	32.725	331.815
		Chil	1030	100	-	-	1342.866	353.4	1696.2	-	-	-
					14241.549	850.911		25	91	12898.683	497.486	13396.169
	Total =	=	1200	100	-	-	1342.866	353.4	1696.2	-	-	-
					14671.345	760.477		25	91	13328.479	407.052	13735.531
	B.L		0	0	0	0	0	0	0	0	0	0
16	2008-09	Deo	0	0	192.345	16.504	0	0	0	192.345	16.504	208.849
		Kail	170	0	_	41.205	0	0	0	-	41.205	-
					1091.231					1091.231		1050.026
		Fir Spruce	0	0	299.09	32.725	0	0	0	299.09	32.725	331.815

		Chil	1030	100		-	237.329	0	237.32		-	-
					13928.683	597.486			9	13691.354	597.486	14288.84
Total =			1200	100	-	-	237.329	0	237.32	-	-	-
			_		14528.479	507.052			9	14291.15	507.052	14798.202
	B.L		0	0	0	0	0	0	0	0	0	0
	Oak		0	0	0	0	0	0	0	0	0	0
17	2009-10	Deo	0	0	192.345	16.504	0	68.43	68	192.345	84.94	277.285
								6				
		Kail	170	0	-	41.205	0	329.2	329	-	370.468	-
					1261.231			63		1261.231		890.763
		Fir	0	0	299.09	32.725	0	230.2	230	299.09	262.971	562.061
		Spruce						46				
		Chil	1030	100	-	-	670.147	2.47	672.61	-	-	-
					14721.354	697.486			7		695.016	14746.223
	Total =	=	1200	100	-	-	670.147	630.4	1300.5	-	23.363	-
					15491.15	607.052		15	62			14797.64
	B.L		0	0	0	0	200.136	56.52	256.66	200.136	56.524	256.66
								4				
Oak			0	0	0	0	0	119.3	119.30	0	119.302	119.302
								02	2			
1	2	3	4	5	6	7	8	9	10	11	12	13
18	2010-11	Deo	0	0	192.345	84.94	0	0	0	192.345	84.94	277
		Kail	170	0	-	370.468	0	0	0	-	370.468	-1061
					1431.231					1431.231		
		Fir	0	0	299.09	262.971	0	0	0	299.09	262.971	562
		Spruce										
		Chil	1030	100	_	_	0	0	0	_	_	-15876
					15081.207	795.016				15081.207	795.016	
	Total =	=	1200	100	-	-76.637	0	0	0	-	-76.637	-16098
					16021.003					16021.003		
	B.L		0	0	200.136	56.524	0	0	0	-	-56.524	-256.66
										200.136		
Oak			0	0	0	119.302	0	0	0	0	-	-
											119.302	119.302

19	2011-12	Deo	0	0	0	0	0	0	0	0	0	0
		Kail	170	0	-170	0	0	0	0	-170	0	-170
		Fir Spruce	0	0	0	0	0	0	0	0	0	0
		Chil	1030	100	-1030	-100	0	0	0	-1030	-100	-1130
Total =			1200	100	-1200	-100	0	0	0	-1200	-100	-1300
B.L			0	0	200.136	-56.524	0	0	0	200.136	56.524	256.66
Oak			0	0	0	119.302	0	0	0	0	119.302	119.302

Appendix-XVII

				Statemen	t of past yiel	ld removed	in the Deo/Kai	l Working	Circle			
Sr. No.	Year	Species	Prescribed	yield in M3	Total o	pening		removed in I		Exces	ss or deficit in	M3
			PB-I	PB-IV	PB-I	PB-IV	PB-I	PB-IV	Total	PB-I	PB-IV	Total
1	1993-94	Deo	840	1500	-840	-1500	2248.167	497.78 6	2745.9 53	1408.16 7	1002.21	405.953
		Kail	4600	4700	-4600	-4700	3892.66	691.21 1	4583.8 71	-707.34	4008.79	4716.13
		Fir Spruce	2400	2500	-2400	-2500	703.682	9.568	713.25	1696.32	2490.43	4186.75
		Chil	70	130	-70	-130	74.065	2.47	76.535	4.065	-127.53	123.465
		Total	7910	8830	-7910	-8830	6918.57	1201.0 4	8119.6 1	-991.43	-7629	-8620.4
		B.L	0	0	0	0	0	0	0	0	0	0
2	1994-95	Deo	840	1500	568.167	2502.21	3123.644	387.25 4	3510.8 98	3691.81 1	2114.96	1576.85 1
		Kail	4600	4700	5307.34	- 8708.79	3167.152	1289.0 86	4456.2 38	2140.19	-7419.7	9559.89
		Fir Spruce	2400	2500	4096.32	4990.43	5876.587	180.84 6	6057.4 33	1780.26 9	4809.59	3029.32
		Chil	70	130	-65.935	-257.53	21.912	0	21.912	-44.023	-257.53	301.553
		Total	7910	8830	-8901.4	-16459	12189.3	1857.1 9	14046. 5	3287.87	-14602	-11314
		B.L	0	0	0	0	0	35.837	35.837	0	35.837	35.837
3	1995-96	Deo	840	1500	2851.81 1	- 3614.96	1717.428	692.12 5	2409.5 53	4569.23 9	2922.84	1646.40 4
		Kail	4600	4700	- 6740.19	- 12119.7	5531.924	1147.4 88	6679.4 12	1208.26	10972.2	12180.5

	1	Fir	2400	2500	-	-	1522.624	156.01	1678.6	902.893	_	-
		Spruce			619.731	7309.59		9	43		7153.57	6250.67
		Chil	70	130	-	-387.53	374.333	1.478	375.81	260.31	-	-
					114.023				1		386.052	125.742
		Total	7910	8830	-4622.1	-23432	9146.309	1997.1	11143.	4524.17	-	-
								1	42	8	21434.7	16910.5
		B.L	0	0	0	0	0	0	0	0	0	0
4	1996-97	Deo	840	1500	3729.23	-	3265.378	209.34	3474.7	6994.61	-	2781.12
					9	4422.84		6	24	7	4213.49	8
		Kail	4600	4700	-	-	5042.066	1803.6	6845.6	-	-	-
					5808.26	15672.2		13	79	766.198	13868.6	14634.8
		Fir	2400	2500	-	-	3112.582	204.84	3317.4	1615.47	-	-
		Spruce			1497.11	9653.57		2	24	5	9448.73	7833.25
		Chil	70	130	190.31	-	12.798	27.448	40.246	203.108	-	-
						516.052					488.604	285.496
		Total	7910	8830	-3385.8	-30265	11432.82	2245.2	13678.	8047.00	-	-
								49	07	2	28019.4	19972.4
		B.L	840	1500	0	0	6.532	0	6.532	6.532	0	6.532
5	1997-98	Deo	840	1500	6154.61	-	1755.262	423.00	2178.2	7909.87	-	2619.39
					7	5713.49		9	71	9	5290.48	9
		Kail	4600	4700	-5366.2	-	4118.736	1058.2	5177.0	1	-	-
						18568.6		78	14	1247.46	17510.3	18757.8
		Fir	2400	2500	-	-	3077.544	7.155	3084.6	2293.01	-	-
		Spruce			784.525	11948.7			99	9	11941.6	9648.55
		Chil	70	130	133.108	-	18.569	5.267	23.836	151.677	-	-461.66
						618.604					613.337	
		Total	7910	8830	137.002	-36849	8970.111	1493.7	10463.	9107.11	-	-
								09	82	3	35355.7	26248.6
		B.L	0	0	0	0	0	4.917	4.917	0	4.917	4.917
6	1998-99	Deo	840	1500	7069.87	-	2051.005	3135.2	5186.2	9120.88	-	5465.65
					9	6790.48		55	6	4	3655.23	9
		Kail	4600	4700	-	-	3888.336	1659.5	5547.8	-	-	-
					5847.46	22210.3		49	85	1959.13	20550.8	22509.9

		Fir	2400	2500	-	-	6143.915	150.64	6294.5	6036.93	-	-
		Spruce			106.981	14441.6		2	57	4	14290.9	8253.99
		Chil	70	130	81.677	-	11.367	0	11.367	93.044	-	-
						743.337					743.337	650.293
		Total	7910	8830	1197.11	-44186	12094.62	4945.4	17040.	13291.7	-	-
			_		_			46	07	4	39240.3	25948.5
		B.L	0	0	0	0	2.402	0	2.402	2.402	0	2.402
7	1999-	Deo	840	1500	8280.88	-	896.676	404.91	1301.5	9177.56	-	4427.24
	2000				4	5155.23		4	9		4750.31	9
		Kail	4600	4700	-	-	2537.964	974.56	3512.5	-	-	-
					6559.13	25250.8		3	27	4021.16	24276.2	28297.4
		Fir	2400	2500	3636.93	-	2288.691	238.23	2526.9	5925.62	-	-
		Spruce			4	16790.9		1	22	5	16552.7	10627.1
		Chil	70	130	23.044	-	6.745	6.259	13.004	29.789	-	-
						873.337					867.078	837.289
		Total	7910	8830	5381.74	-48070	5730.076	1623.9	7354.0	11111.8	-	-
								67	43	1	46446.3	35334.5
		B.L	0	0	0	0	0	0	0	0	0	0
8	2000-01	Deo	840	1500	8337.56	-	734.606	442.11	1176.7	9072.16	-	3263.97
						6250.31		9	25	6	5808.19	4
		Kail	4600	4700	-	-	1789.491	1175.6	2965.1	-	-	-
					8621.16	28976.2		32	23	6831.67	27800.6	34632.3
		Fir	2400	2500	3525.62	-	1708.912	283.34	1992.2	5234.53	-	-
		Spruce			5	19052.7		9	61	7	18769.3	13534.8
		Chil	70	130	-40.211	-	32.274	0	32.274	-7.937	-	-
						997.078					997.078	1005.02
		Total	7910	8830	3201.81	-55276	4265.283	1901.1	6166.3	7467.09	-	-
									83	5	53375.2	45908.1
		B.L	0	0	0	0	172.735	0	172.73	172.735	0	172.735
	2001.02		0.40	1.500	0202.15		0100.010	212.00	5	10424.0		2225.02
9	2001-02	Deo	840	1500	8232.16	7200.10	2189.813	213.03	2402.8	10421.9	7005.15	3326.82
	1	IZ a i 1	4600	4700	6	7308.19	4505 160	029.94	51	8	7095.15	5
		Kail	4600	4700	114217	32500.6	4505.169	928.84	5434.0	-6926.5	21571 7	38498.2
					11431.7	<i>5</i> ∠500.6		1	1		31571.7	30498.2

		Fir	2400	2500	2834.53	-	13518.39	531.76	14050.	16352.9	_	_
		Spruce			7	21269.3		4	16	3	20737.6	4384.65
		Chil	70	130	-77.937	-	27.921	0	27.921	-50.016	-	-
						1127.08					1127.08	1177.09
		Total	7910	8830	-442.91	-62205	20241.3	1673.6	21914.	19798.3	-	-
								43	94	9	60531.6	40733.2
		B.L	0	0	0	0	480.679	614.26	1094.9	480.679	614.263	1094.94
								3	42			2
10	2002-03	Deo	840	1500	9581.97	-	1563.105	470.81	2033.9	11145.0	-	3020.74
					9	8595.15		2	17	8	8124.34	2
		Kail	4600	4700	-	-	2363.05	620.19	2983.2	-	-	-44815
					11526.5	36271.7		7	47	9163.45	35651.5	
		Fir	2400	2500	13952.9	-	860.831	344.44	1205.2	14813.7	-	-
		Spruce			3	23237.6		8	79	6	22893.1	8079.37
		Chil	70	130	-	-	19.614	0	19.614	-	-	-
					120.016	1257.08				100.402	1257.08	1357.48
		Total	7910	8830	11888.4	-69362	4806.6	1435.4	6242.0	16694.9	-	-
								57	57	9	67926.1	51231.1
		B.L	0	0	0	0	0	0	0	0	0	0
11	2003-04	Deo	840	1500	10305.0	-	1831.986	243.05	2075.0	12137.0	-	2755.77
					8	9624.34			36	7	9381.29	8
		Kail	4600	4700	-	-	1859.389	362.82	2222.2	-	-	-
					13763.5	40351.5		9	18	11904.1	39988.7	51892.8
		Fir	2400	2500	12413.7	-	1901.734	4.784	1906.5	14315.5	-	-
		Spruce			6	25393.1			18		25388.4	11072.9
		Chil	70	130	-	-	22.716	0	22.716	-	-	-
					170.402	1387.08				147.686	1387.08	1534.76
		Total	7910	8830	8784.99	-76756	5615.825	610.66	6226.4	14400.8	-	-
								3	88	2	76145.4	61744.6
		B.L	0	0	0	0	2.402	0	2.402	2.402	0	2.402
12	2004-05	Deo	840	1500	11297.0	-	1123.629	182.05	1305.6	12420.7	-	1721.46
					7	10881.3		9	88		10699.2	6
		Kail	4600	4700	-	-	1323.937	1058.6	2382.6	-	-	-
					16504.1	44688.7		63		15180.1	43630.1	58810.2

		Fir Spruce	2400	2500	11915.5	- 27888.4	754.959	58.161	813.12	12670.4 6	27830.2	- 15159.7
		•				27000.4				~	27630.2	13139.7
		Chil	70	130	-	-	207.796	0	207.79	-9.89	-	-
		T 1	7010	0020	217.686	1517.08	2410 221	1200.0	6	0001.10	1517.08	1526.97
		Total	7910	8830	6490.82	-84975	3410.321	1298.8	4709.2	9901.13	- 026766	72775 4
		B.L	0	0	0	0	0	83	04	8	83676.6	73775.4
10	2005.06			_		0	0	_	_	ŭ	0	U
13	2005-06	Deo	840	1500	11580.7	10100 0	963.904	66.884	1030.7	12544.6	- 10100.0	412.254
		77 '1	4600	4700		12199.2	1170 700	42.17	1217.0		12132.3	
		Kail	4600	4700	10700 1	40220 1	1172.792	43.17	1215.9	10607.2	40206.0	-
		Fir	2400	2500	19780.1	48330.1	1985.554	13.506	62 1999.0	18607.3	48286.9	66894.2
			2400	2500	10270.4	30330.2	1985.554	13.506		12256.0 1	30316.7	18060.7
		Spruce				30330.2			6		30310.7	18000.7
		Chil	70	130	-79.89	-	11.462	0	11.462	-68.428	-	-
						1647.08					1647.08	1715.51
		Total	7910	8830	1991.14	-92507	4133.71	123.56	4257.2	6124.85	-92383	-86258
					0		2200 (22		7	2200 12		2200 52
		B.L	0	0	0	0	3389.633	0	3389.6	3389.63	0	3389.63
1.4	2006.07	D	0.40	1500	11704.6		25.67.60.6	1275.6	33	1 4272 2		3
14	2006-07	Deo	840	1500	11704.6	12622 2	2567.696	1375.6	3943.3	14272.3	100567	2015.60
		17 - 11	4600	4700		13632.3	1025 202	59 512.75	55		12256.7	9
		Kail	4600	4700	23207.3	52986.9	1835.393	512.75	2348.1 44	21371.9	52474.1	73846.1
		Fir	2400	2500	9856.00	32960.9	14872.8	567.65	15440.	24728.8	-32249	/3040.1
		Spruce	2400	2300	9630.00	32816.7	140/2.0	307.03	15440.	24/20.0	-32249	7520.23
		_			,	32010.7						1320.23
		Chil	70	130	-	-	2.956	0	2.956	-	-	-
			= 0.4.0	0020	138.428	1777.08	10250	217.50	21.72.1	135.472	1777.08	1912.55
		Total	7910	8830	-1785.2	-101213	19278.8	2456.0	21734.	17493.7	-98757	-81263
		D.I	0	0	0	0	1110 525	6	9	1110.52	070.504	2000 11
		B.L	0	0	0	0	1118.535	979.58	2098.1	1118.53	979.584	2098.11
15	2007-08	Deo	840	1500	13432.3		483.27	0	19 483.27	13915.5		158.879
15	2007-08	Deo	840	1500	13432.3	13756.7	483.27	0	483.27	13913.5	13756.7	138.879
		Kail	4600	4700		13/30./	539.844	0	539.84	/	13/30./	
		Kan	4000	4/00	-	-	339.044	U	339.64	-	-	-

					25971.9	57174.1			4	25432.1	57174.1	82606.2
		Fir	2400	2500	22328.8	-34749	3057.414	0	3057.4	25386.2	-34749	-
		Spruce							14	2		9362.81
		Chil	70	130	-	-	0	0	0	-	-	-
					205.472	1907.08				205.472	1907.08	2112.55
		Total	7910	8830	9583.69	-107587	4080.53	0	4080.5	13664.2	-107587	-93923
		B.L	0	0	0	0	46.266	0	46.266	46.266	0	46.266
		Oak	0	0	0	0	18.149	0	18.149	18.149	0	18.149
16	2008-09	Deo	840	1500	13075.5	-	2935.141	0	2935.1	16010.7	-	754.02
					7	15256.7			41	1	15256.7	
		Kail	4600	4700	-	-	1776.157	0	1776.1	-	-	-
					30032.1	61874.1			57	28255.9	61874.1	90130.1
		Fir	2400	2500	22986.2	-37249	4320.028	0	4320.0	27306.2	-37249	-
		Spruce			2				28	5		9942.79
		Chil	70	130	-	-	0	0	0	-	-	-
					275.472	2037.08				275.472	2037.08	2312.55
		Total	7910	8830	5754.22	-116417	9031.326	0	9031.3	14785.5	-116417	-101631
									26	4		
		B.L	0	0	0	0	2860.96	0	2860.9	2860.96	0	2860.96
		0.1	0	0	-	0	52.222	0	6	52.222		72.222
		Oak	0	0	0	0	72.222	0	72.222	72.222	0	72.222
17	2009-10	Deo	840	1500	15170.7	-	1623.577	542.39	2165.9	16794.2	-	579.994
			1.500	4=00	1	16756.7		7	74	9	16214.3	
		Kail	4600	4700	22055.0	- (6574.1	757.139	56.62	813.75	- 22000 0	-	-
		F!	2400	2500	32855.9	66574.1	972.052	100.02	9	32098.8	66517.5	98616.3
		Fir	2400	2500	24906.2 5	-39749	872.053	199.93 5	1071.9 88	25778.3	39549.1	13770.8
		Spruce			3						39349.1	13770.8
		Chil	70	130	-	-	57.688	0	57.688	-	-	-
			5 010	0020	345.472	2167.08	2210.455	5 00.05	4100 1	287.784	2167.08	2454.86
	To	otal	7910	8830	6875.54 4	-125247	3310.457	798.95 2	4109.4 09	10186	-124448	-114262
		B.L	0	0	0	0	100.868	1.07	101.93 8	100.868	1.07	101.938

		Oak	0	0	0	0	2237.086	1.201	2238.2	2237.08	1.201	2238.28
									87	6		7
	2010-11		840	1500	15954.3	-17714	853.151	0	853.15	16807.4	-	-
18		Deo							1	4	17714.3	906.855
			4600	4700	-36699	-71218	628.387	0	628.38	-	-	-107288
		Kail							7	36070.4	71217.5	
		Fir	2400	2500	23378.3	-42049	821.974	0	821.97	24200.2	-	-
		Spruce							4	7	42049.1	17848.8
			70	130	-357.78	-2297.1	0	0	0	-	-	-
		Chil								357.784	2297.08	2654.86
	Total =	=	7910	8830	2276.00	-133278	2303.512	0	2303.5	4579.51	-133278	-128698
	1	,			1				12	3		
			0	0	100.868	0	0	0	0	-	0	-
		B.L								100.868		100.868
			0	0	2237.08	0	0	0	0	-	0	-
		Oak			6					2237.09		2237.09
	2011-12		840	1500	15967.4	-19214	800.829	68.154	868.98	16768.2	-	-
19		Deo							3	7	19146.1	2377.87
			4600	4700	-40670	-75918	467.091	5.594	472.68	-	-	-116115
		Kail							5	40203.3	75911.9	
		Fir	2400	2500	21800.3	-44549	203.221	0	203.22	22003.4	-	-
		Spruce							1	9	44549.1	22545.6
			70	130	-427.78	-2427.1	0	0	0	-	-	-
		Chil								427.784	2427.08	2854.86
	Total =	=	7910	8830	-	-142108	1471.141	73.748	1544.8	-	-142034	-143894
					3330.49				89	1859.35		
	_	B.L	0	0	-	0	0	0	0	100.868	0	100.868
					100.868							
		Oak	0	0	-	0	0	0	0	2237.08	0	2237.08
					2237.09					6		6

Appendix-XVIII

				Statement	of past yield	d removed i	n the Fir/Spru	ce Working	g Circle			
Sr. No.	Year	Species	Prescribe	d yield in M3	Total o devia		Yield r	emoved in 1	M3	Exce	ss or deficit ir	n M3
			PB-I	PB-IV	PB-I	PB-IV	PB-I	PB-IV	Total	PB-I	PB-IV	Total
1	1993-94	Deo	190	125	-190	-125	161.229	117.81 5	279.044	-28.771	-7.185	-35.956
		Kail	210	300	-210	-300	839.993	278.09 4	1118.08 7	629.993	-21.906	608.087
		Fir Spruce	3880	3800	-3880	-3800	1641.829	111.38 9	1753.21 8	2238.171	3688.611	5926.782
		Chil	0	0	0	0	0	0	0	0	0	0
	Total =	=	4280	4225	-4280	-4225	2643.051	507.29 8	3150.34 9	- 1636.949	3717.702	5354.651
		B.L	0	0	0	0	41.902	0	41.902	41.902	0	41.902
2	1994-95	Deo	190	125	218.771	132.185	106.337	89.783	196.12	112.434	-42.402	154.836
		Kail	210	300	419.993	321.906	698.957	304.02	1002.97 7	1118.95	-17.886	1101.06 4
		Fir Spruce	3880	3800	6118.171	7488.611	9606.367	460.27 8	10066.6 45	3488.19 6	7028.333	3540.137
		Chil	0	0	0	0	0	295	295	0	295	295
	Total =	=	4280	4225	- 5916.949	- 7942.702	10411.661	1149.0 81	11560.7 42	4494.71 2	- 6793.621	2298.909
		B.L	0	0	0	0	13.087	0	13.087	13.087	0	13.087
3	1995-96	Deo	190	125	302.434	167.402	273.692	156.58 5	430.277	-28.742	-10.817	-39.559
		Kail	210	300	908.95	317.886	1224.485	548.71	1773.19 5	2133.43 5	230.824	2364.25
		Fir Spruce	3880	3800	391.804	10828.333	4151.411	3592.2 58	7743.66 9	3759.60 7	7236.075	3476.468

		Chil	0	0	0	295	0	0	0	0	295	295
	Total =	=	4280	4225	214.712	-	5649.588	4297.5	9947.14	5864.3	-	-
						11018.621		53	1		6721.068	856.768
		B.L	0	0	0	0	3	0	3	3	0	3
4	1996-97	Deo	190	125	-	-	304.655	0	304.655	85.913	-	-49.904
					218.742	135.817					135.817	
		Kail	210	300	1923.43	-69.176	2381.751	337.79	2719.54	4305.18	268.62	4573.80
					5			6	7	6		6
		Fir	3880	3800	-	-	9746.108	3227.4	12973.5	9625.71	-	1817.11
		Spruce			120.393	11036.075		73	81	5	7808.602	3
		Chil	0	0	0	295	12.977	6.026	19.003	12.977	301.026	314.003
	Total =	=	4280	4225	1584.3	-	12445.491	3571.2	16016.7	14029.7	-	6655.01
						10946.068		95	86	91	7374.773	8
		B.L	0	0	0	0	0	0	0	0	0	0
5	1997-98	Deo	190	125	-	-	291.249	96.945	388.194	187.162	-	23.29
					104.087	260.817					163.872	
		Kail	210	300	4095.18	-31.38	1793.434	282.26	2075.69	5888.62	250.883	6139.50
					6			3	7			3
		Fir	3880	3800	5745.71	-	9068.579	751.77	9820.35	14814.2	-	3957.47
		Spruce			5	11608.602		9	8	94	10856.823	1
		Chil	0	0	12.977	301.026	23.737	7.112	30.849	36.714	308.138	344.852
	Total =	=	4280	4225	9749.79	-	11176.999	1138.0	12315.0	20926.7	-	10465.1
					1	11599.773		99	98	9	10461.674	16
		B.L	0	0	0	0	0	18.303	18.303	0	18.303	18.303
6	1998-99	Deo	190	125	-2.838	-	457.064	17.057	474.121	454.226	-	182.411
						288.872					271.815	
		Kail	210	300	5678.62	-49.117	1753.314	238.18	1991.49	7431.93	189.068	7621.00
								5	9	4		2
		Fir	3880	3800	10934.2	-	16449.365	804.54	17253.9	27383.6	-	13531.3
		Spruce			94	14656.823		8	13	59	13852.275	84
		Chil	0	0	36.714	308.138	0	0	0	36.714	308.138	344.852
	Total =	=	4280	4225	16646.7	-	18659.743	1059.7	19719.5	35306.5	-	21679.6

					9	14686.674		9	33	33	13626.884	49
		B.L	0	0	0	0	1156.551	0	1156.55 1	1156.55 1	0	1156.55 1
7	1999- 2000	Deo	190	125	264.226	396.815	66.406	64.179	130.585	330.632	332.636	-2.004
		Kail	210	300	7221.93 4	110.932	287.259	98.955	386.214	7509.19 3	-11.977	7497.21 6
		Fir Spruce	3880	3800	23503.6 59	17652.275	1336.006	269.06 3	1605.06 9	24839.6 65	17383.212	7456.45 3
		Chil	0	0	36.714	308.138	3.789	0	3.789	40.503	308.138	348.641
	Total =	=	4280	4225	31026.5 33	17851.884	1693.46	432.19	2125.65	32719.9 93	- 17419.687	15300.3 06
		B.L	0	0	0	0	0	0	0	0	0	0
8	2000-01	Deo	190	125	140.632	- 457.636	46.089	51.964	98.053	186.721	405.672	218.951
		Kail	210	300	7299.19 3	311.977	423.522	157.02 6	580.548	7722.71 5	- 154.951	7567.76 4
		Fir	3880	3800	20959.6	-	2396.416	1081.5	3478.01	23356.0	-	3254.46
		Spruce			65	21183.212		95	1	81	20101.617	4
		Chil	0	0	40.503	308.138	0	0	0	40.503	308.138	348.641
	Total =	=	4280	4225	28439.9 93	- 21644.687	2866.027	1290.5 85	4156.61 2	31306.0 2	20354.102	10951.9 18
		B.L	0	0	0	0	465.183	375.32 3	840.506	465.183	375.323	840.506
9	2001-02	Deo	190	125	-3.279	530.672	152.556	111.85 7	264.413	149.277	418.815	269.538
		Kail	210	300	7512.71 5	- 454.951	651.913	294.71 7	946.63	8164.62 8	160.234	8004.39
		Fir Spruce	3880	3800	19476.0 81	23901.617	5163.811	4283.1 61	9446.97 2	24639.8 92	- 19618.456	5021.43
		Chil	0	0	40.503	308.138	29.161	0	29.161	69.664	308.138	377.802
	Total =		4280	4225	27026.0	24579.102	5997.441	4689.7 35	10687.1 76	33023.4 61	19889.367	13134.0 94

		B.L	0	0	0	375.323	782.991	21.609	804.6	782.991	353.714	429.277
10	2002-03	Deo	190	125	-40.723	-	237.203	92.663	329.866	196.48	-	-
						543.815					451.152	254.672
		Kail	210	300	7954.62	-	533.66	352.08	885.746	8488.28	-	8380.14
					8	460.234		6		8	108.148	
		Fir	3880	3800	20759.8	-	1432.497	868.34	2300.84	22192.3	-	-
		Spruce			92	23418.456		9	6	89	22550.107	357.718
		Chil	0	0	69.664	308.138	206.154	0	206.154	275.818	308.138	583.956
	Total =	=	4280	4225	28743.4	-	2409.514	1313.0	3722.61	31152.9	-	8351.70
					61	24114.367		98	2	75	22801.269	6
		B.L	0	0	0	0	0	0	0	0	0	0
11	2003-04	Deo	190	125	6.48	-	173.571	258.85	432.428	180.051	-	-
						576.152		7			317.295	137.244
		Kail	210	300	8278.28	-	221.61	258.41	480.027	8499.89	-	8350.16
					8	408.148		7		8	149.731	7
		Fir	3880	3800	18312.3	-	2215.643	1702.5	3918.20	20528.0	-	-
		Spruce			89	26350.107		59	2	32	24647.548	4119.516
		Chil	0	0	22192.3	308.138	0	0	0	22192.3	308.138	22500.5
					89					89		27
	Total =	=	4280	4225	48789.5	-	2610.824	2219.8	4830.65	51400.3	-	26593.9
	1				46	27026.269		33	7	7	24806.436	34
		B.L	0	0	22192.3	0	0	1605.3	1605.39	-	1605.39	-
		_			89			97	7	22192.389	7	20586.992
12	2004-05	Deo	190	125	-9.949	-	422.859	19.362	442.221	412.91	-	-10.023
		T7 '1	210	200	0200.00	442.295	225 455	7.6.02.4	202 401	0505.05	422.933	0122.7.5
		Kail	210	300	8289.89	- 440.721	235.477	56.924	292.401	8525.37	- 202 007	8132.56
		E.	2000	2000	8	449.731	1707.027	1004.5	2702.41	5	392.807	8
		Fir	3880	3800	16648.0	-	1707.837	1084.5	2792.41	18355.8	27262.060	-9007.1
		Spruce			32	28447.548		79	6	69	27362.969	
		Chil	0	0	22192.3	308.138	1.478	0	1.478	22193.8	308.138	22502.0
					89					67		05
	Total =	=	4280	4225	47120.3	-	2367.651	1160.8	3528.51	49488.0	-	21617.4
					7	29031.436		65	6	21	27870.571	5

		B.L	0	0	0	0	0	0	0	0	0	0
13	2005-06	Deo	190	125	222.91	-	443.825	413.75	857.579	666.735	-	532.556
						547.933		4			134.179	
		Kail	210	300	8315.37	-	400.807	1504.3	1905.19	8716.18	811.578	9527.76
					5	692.807		85	2	2		
		Fir	3880	3800	14475.8	-	7888.401	1181.3	9069.73	22364.2	-	-
		Spruce			69	31162.969		35	6	7	29981.634	7617.364
		Chil	0	0	22193.8	308.138	0	0	0	22193.8	308.138	22502.0
					67					67		05
	Total =	=	4280	4225	45208.0	-	8733.033	3099.4	11832.5	53941.0	-	24944.9
					21	32095.571		74	07	54	28996.097	57
		B.L	0	0	0	0	511.379	0	511.379	511.379	0	511.379
14	2006-07	Deo	190	125	476.735	-	658.512	12.301	670.813	1135.24	-	888.369
						259.179				7	246.878	
		Kail	210	300	8506.18	511.578	1331.585	150.92	1482.51	9837.76	662.506	10500.2
					2			8	3	7		73
		Fir	3880	3800	18484.2	-	12548.134	1125.9	13674.1	31032.4	-	-
		Spruce			7	33781.634		77	11	04	32655.657	1623.253
		Chil	0	0	22193.8	308.138	0	0	0	22193.8	308.138	22502.0
					67					67		05
	Total =	=	4280	4225	49661.0	-	14538.231	1289.2	15827.4	64199.2	-	32267.3
					54	33221.097		06	37	85	31931.891	94
		B.L	0	0	0	0	1258.241	432.54	1690.78	1258.24	432.548	1690.78
								8	9	1		9
15	2007-08	Deo	190	125	945.247	-	49.663	11.618	61.281	994.91	-360.26	634.65
						371.878						
		Kail	210	300	9627.76	362.506	0	2.08	2.08	9627.76	364.586	9992.35
					7					7		3
		Fir	3880	3800	27152.4	-	0	234.81	234.811	27152.4	-	-
		Spruce			04	36455.657		1		04	36220.846	9068.442
		Chil	0	0	22193.8	308.138	0	0	0	22193.8	308.138	22502.0
					67					67		05
	Total =	=	4280	4225	59919.2	-	49.663	248.50	298.172	59968.9	-	24060.5
					85	36156.891		9		48	35908.382	66

		B.L	0	0	0	0	0	0	0	0	0	0
16	2008-09	Deo	190	125	804.91	-485.26	73.14	0	73.14	878.05	-485.26	392.79
		Kail	210	300	9417.76	64.586	345.701	0	345.701	9763.46	64.586	9828.05
					7					8		4
		Fir	3880	3800	23272.4	-	4716.96	0	4716.96	27989.3	-	-
		Spruce			04	40020.846				64	40020.846	12031.482
		Chil	0	0	22193.8	308.138	0	0	0	22193.8	308.138	22502.0
					67					67		05
	Total =	=	4280	4225	55688.9	-	5135.801	0	5135.80	60824.7	-	20691.3
	T I				48	40133.382	101.00		1	49	40133.382	67
		B.L	0	0	0	0	401.29	0	401.29	401.29	0	401.29
		Oak	0	0	0	0	0	0	0	0	0	0
17	2009-10	Deo	190	125	688.05	-610.26	601.436	43.642	645.078	1289.48	-	722.868
										6	566.618	
		Kail	210	300	9553.46	-	716.006	18.089	734.095	10269.4	-	10052.1
					8	235.414				74	217.325	49
		Fir	3880	3800	24109.3	-	5798.256	3720.3	9518.65	29907.6	-	10102.027
		Spruce			64	43820.846		99	5	2	40100.447	10192.827
		Chil	0	0	22193.8	308.138	0	0	0	22193.8	308.138	22502.0
					67					67		05
	Total =	=	4280	4225	56544.7	-	7115.698	3782.1	10897.8	63660.4	-	23084.1
		~ ~	0		49	44358.382	44.5.0.50	3	28	47	40576.252	95
		B.L	0	0	0	0	416.263	33.843	450.106	416.263	33.843	450.106
		Oak	0	0	0	0	1042.831	72.368	1115.19	1042.83	72.368	1115.19
1.0	2010.11	-	100	10.7	1000 10			0	9	110510		9
18	2010-11	Deo	190	125	1099.48	-	6.997	0	6.997	1106.48	-	414.865
		17 - 11	210	200	10050.4	691.618	262 411	0	262 411	10421.9	691.618	0004.56
		Kail	210	300	10059.4 7	517.325	362.411	0	362.411	10421.8 9	517.325	9904.56
		Fir	3880	3800	26027.6	317.343	2755.348	0	2755.34	28782.9	317.323	
		Spruce	3000	3000	20027.0	43900.4	2133.346	0	8	7	43900.4	15117.5
		•										
		Chil	0	0	22193.8	308.138	0	0	0	22193.8	308.138	22502.0
					7					7		1

	Total =	=	4280	4225	59380.4	-	3124.756	0	3125	62505.2	-	17703.9
					5	44801.3					44801.3	5
		B.L	0	0	416.263	33.843			0	1	-33.843	-
										416.263		450.106
		Oak	0	0	1042.83	72.368			0	-	-72.368	-1115.2
					1					1042.83		
19	2011-12	Deo	190	125	916.483	-	0	0	0	916.483	-	99.865
						816.618					816.618	
		Kail	210	300	10211.8	-	725.19	0	725.19	10937.0	-	10119.7
					9	817.325				8	817.325	5
		Fir	3880	3800	24902.9	-	1891.419	0	1891.41	26794.3	-	-
		Spruce			7	47700.4			9	9	47700.4	20906.1
		Chil	0	0	22193.8	308.138	0	0	0	22193.8	308.138	22502.0
					7					7		1
	Total =	=	4280	4225	58225.2	-	2616.609	0	2617	60841.8	-	11815.5
						49026.3				1	49026.3	6
		B.L	0	0	-	-33.843	0	0	0	416.263	33.843	450.106
					416.263							
		Oak	0	0	-	-72.368	0	0	0	1042.83	72.368	1115.19
					1042.83					1		9

APPENDIX-XIX

	Sta	atement of	f past yield	removed in the	Protection	Working Cir	cle
Sr. No.	Year	Species	Prescribed yield	Balance Deviation as on	Total	Yield removed in M3	Excess or deficit in M3
1	2	3	4	5	6	7	8
1	1993-94	Deo	0	0	0	0	0
		Kail	0	0	0	14.815	14.815
		Fir	0	0	0	4.784	4.784
		Chil	0	0	0	0	0
		B.L	0	0	0	0	0
		Total	0	0	0	19.599	19.599
2	1994-95	Deo	0	0	0	0	0
		Kail	0	14.815	14.815	3.55	18.365
		Fir	0	4.784	4.784	4.784	9.568
		Chil	0	0	0	0	0
		B.L	0	0	0	3.2	3.2
		Total	0	19.599	19.599	11.534	31.133
3	1995-96	Deo	0	0	0	0	0
		Kail	0	18.365	18.365	13.08	31.445
		Fir	0	9.568	9.568	4.784	14.352
		Chil	0	0	0	0	0
		B.L	0	3.2	3.2	3	6.2
		Total	0	31.133	31.133	20.864	51.997
•							
4	1996-97	Deo	0	0	0	0	0
		Kail	0	31.445	31.445	0	31.445
		Fir	0	14.352	14.352	0	14.352

		Chil	0	0	0	0	0
		B.L	0	6.2	6.2	14302.5	14308.734
						34	
		Total	0	51.997	51.997	14302.5	14354.531
						34	
5	1997-98	Deo	0	0	0	35.28	35.28
		Kail	0	31.445	31.445	32.476	63.921
		Fir	0	14.352	14.352	2282.76	2297.114
						2	
		Chil	0	0	0	0	0
		B.L	0	14308.734	14308.7	0	14308.734
					34		
		Total	0	14354.531	14354.5	2350.51	16705.049
	1				31	8	
	1000.00	-	0	25.20	27.20	1250.00	1011011
6	1998-99	Deo	0	35.28	35.28	1279.08	1314.364
		Kail	0	63.921	63.921	3.819	67.74
		Fir	0	2297.114	2297.11	67.857	2364.971
		1.11	U	2297.114	4	07.837	2304.971
		Chil	0	0	0	0	0
		B.L	0	14308.734	14308.7	0	14308.734
					34		
		Total	0	16705.049	16705.0	1350.76	18055.809
	1				49		
	1000	D		1214264	121426	0	1214264
7	1999- 2000	Deo	0	1314.364	1314.36 4	0	1314.364
		Kail	0	67.74	67.74	0	67.74
		Fir	0	2364.971	2364.97	0	2364.971
					1		
		Chil	0	0	0	0	0

		B.L	0	14308.734	14308.7 34	0	14308.734
		Total	0	18055.809	18055.8 09	0	18055.809
8	2000-01	Deo	0	1314.364	1314.36	8.252	1322.616
		Kail	0	67.74	67.74	0	67.74
		Fir	0	2364.971	2364.97 1	0	2364.971
		Chil	0	0	0	0	0
		B.L	0	14308.734	14308.7 34	0	14308.734
	•	Total	0	18055.809	18055.8 09	8.252	18064.061
9	2001-02	Deo	0	1322.616	1322.61 6	27.119	1349.735
		Kail	0	67.74	67.74	698.614	766.354
		Fir	0	2364.971	2364.97 1	570.48	2935.451
		Chil	0	0	0	17.223	17.223
		B.L	0	14308.734	14308.7 34	148.7	14457.434
		Total	0	18064.061	18064.0 61	1462.13 6	19526.197
10	2002-03	Deo	0	1349.735	1349.73 5	32.53	1382.265
		Kail	0	766.354	766.354	5.98	772.334
		Fir	0	2935.451	2935.45 1	1632.72 8	4568.179
		Chil	0	17.223	17.223	0	17.223
		B.L	0	14457.434	14457.4	0	14457.434

			Î		34		
		Total	0	19526.197	19526.1	1671.23	21197.435
	T				97	8	
	2002.04	-		1.00.00.00			
11	2003-04	Deo	0	1382.265	1382.26	45.386	1427.651
		Kail	0	772.334	772.334	12.615	784.949
		Fir	0	4568.179	4568.17	1.969	4570.148
					9		
		Chil	0	17.223	17.223	0	17.223
		B.L	0	14457.434	14457.4	0	14457.434
		Total	0	21107.425	34	50.07	21257 405
		Total	0	21197.435	21197.4 35	59.97	21257.405
					33		
12	2004-05	Deo	0	1427.651	1427.65	4.126	1431.777
					1		
		Kail	0	784.949	784.949	31.668	816.617
		Fir	0	4570.148	4570.14	255.424	4825.572
		Chil	0	17.223	8 17.223	0	17.223
		B.L	0	14457.434	14457.4	0	14457.434
		D.L.	0	14437.434	34	0	14437.434
		Total	0	21257.405	21257.4	291.218	21548.623
	<u>, </u>				05		
13	2005-06	Deo	0	1431.777	1431.77	2.855	1434.632
		Kail	0	816.617	7 816.617	4.205	820.822
		Fir	0	4825.572	4825.57	4.203	4825.572
		1 11	0	4023.372	4623.37	0	4023.372
		Chil	0	17.223	17.223	0	17.223
		B.L	0	14457.434	14457.4	0	14457.434
					34		

		Total	0	21548.623	21548.6 23	7.06	21555.683
14	2006-07	Deo	0	1434.632	1434.63 2	0	1434.632
		Kail	0	820.822	820.822	0	820.822
		Fir	0	4825.572	4825.57 2	0	4825.572
		Chil	0	17.223	17.223	0	17.223
		B.L	0	14457.434	14457.4 34	4231.62 5	18689.059
		Total	0	21555.683	21555.6 83	4231.62 5	25787.308
15	2007-08	Deo	0	1434.632	1434.63	0	1434.632
		Kail	0	820.822	820.822	0	820.822
		Fir	0	4825.572	4825.57 2	0	4825.572
		Chil	0	17.223	17.223	0	17.223
		B.L	0	18689.059	18689.0 59	4230.62 5	22919.684
		Total	0	25787.308	25787.3 08	4230.62 5	30017.933
16	2008-09	Deo	0	1434.632	1434.63 2	0	1434.632
		Kail	0	820.822	820.822	0	820.822
		Fir	0	4825.572	4825.57 2	0	4825.572
		Chil	0	17.223	17.223	0	17.223
		Oak	0	0	0	0	0
		B.L	0	22919.684	22919.6 84	0	22919.684
		Total	0	30017.933	30017.9 33	0	30017.933

16	2009-10	Deo	0	1434.632	1434.63	68.436	1503.068
		Kail	0	820.822	820.822	329.263	1150.085
		Fir	0	4825.572	4825.57 2	230.246	5055.818
		Chil	0	17.223	17.223	2.47	19.693
		Oak	0	0	0	119.302	119.302
		B.L	0	22919.684	22919.6 84	56.524	22976.208
	•	Total	0	30017.933	30017.9	806.241	30824.174
					33		
17	2010-11	Deo	0	1503.068	1503.06 8		1503.068
		Kail	0	1150.085	1150.08 5		1150.085
		Fir	0	5055.818	5055.81 8		5055.818
		Chil	0	19.693	19.693		19.693
		Oak	0	119.302	119.302		119.302
		B.L	0	22976.21	22976.2 1		22976.208
		Total	0	30824.174	30824.1 74	0	30824.174
18	2011-12	Deo	0	1503.068	1503.06 8		1503.068
		Kail	0	1150.085	1150.08 5		1150.085
		Fir	0	5055.818	5055.81 8		5055.818
		Chil	0	19.693	19.693		19.693
		Oak	0	119.302	119.302		119.302
		B.L	0	22976.21	22976.2 1		22976.208

Total =	0	30824.174	30824.1	0	30824.174
			74		

APPENDIX-XX

	Sta	tement of		removed in the		Working Ci	rcle
Sr. No.	Year	Species	Prescribed yield in M3	Balance Deviation as on	Total	Yield removed in M3	Excess or deficit in M3
1	2	6	7	8	9	10	11
1	1993-94	Deo	0	0	0	0	0
		Kail	0	0	0	0	0
		Fir	0	0	0	0	0
		Chil	0	0	0	0	0
		B.L	0	0	0	1.478	1.478
		Total	0	0	0	1.478	1.478
2	1994-95	Deo	0	0	0	0	0
		Kail	0	0	0	0	0
		Fir	0	0	0	0	0
		Chil	0	0	0	0	0
		B.L	0	1.478	1.478	0	1.478
		Total	0	1.478	1.478	0	1.478
3	1995-96	Deo	0	0	0	0	0
		Kail	0	0	0	0	0
		Fir	0	0	0	0	0
		Chil	0	0	0	0	0
		B.L	0	1.478	1.478	0	1.478
		Total	0	1.478	1.478	0	1.478

4	1996-97	Deo	0	0	0	0	0
		Kail	0	0	0	0	0
		Fir	0	0	0	0	0
		Chil	0	0	0	0	0
		B.L	0	1.478	1.478	44.536	46.014
		Total	0	1.478	1.478	44.536	46.014
	1007.00	D	0			0	0
5	1997-98	Deo	0	0	0	0	0
		Kail	0	0	0	5.78	5.78
		Fir	0	0	0	22.228	22.228
		Chil	0	0	0	1.778	1.778
		B.L	0	46.014	46.014	0	46.014
		Total	0	46.014	46.014	29.786	75.8
6	1998-99	Deo	0	0	0	8.252	8.252
		Kail	0	5.78	5.78	4.205	9.985
		Fir	0	22.228	22.228	0	22.228
		Chil	0	1.778	1.778	0	1.778
		B.L	0	46.014	46.014	0	46.014
		Total	0	75.8	75.8	12.457	88.257
7	1999- 2000	Deo	0	8.252	8.252	0	8.252
		Kail	0	9.985	9.985	1.775	11.76
		Fir	0	22.228	22.228	0	22.228
		Chil	0	1.778	1.778	0	1.778
		B.L	0	46.014	46.014	0	46.014
	1	Total	0	88.257	88.257	1.775	90.032

8	2000-01	Deo	0	8.252	8.252	0	8.252
		Kail	0	11.76	11.76	0	11.76
		Fir	0	22.228	22.228	0	22.228
		Chil	0	1.778	1.778	0	1.778
		B.L	0	46.014	46.014	0	46.014
	1	Total	0	90.032	90.032	0	90.032
9	2001-02	Deo	0	8.252	8.252	8.274	16.526
		Kail	0	11.76	11.76	49.554	61.314
		Fir	0	22.228	22.228	0	22.228
		Chil	0	1.778	1.778	25.337	27.115
		B.L	0	46.014	46.014	0	46.014
		Total	0	90.032	90.032	83.165	173.197
10	2002-03	Deo	0	16.526	16.526	8.252	24.778
		Kail	0	61.314	61.314	8.41	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	27.115	27.115	4.434	31.549
		B.L	0	46.014	46.014	0	46.014
		Total	0	173.197	173.197	21.096	194.293
11	2003-04	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	31.549	31.549	1.478	33.027
		B.L	0	46.014	46.014	3.232	49.246
		Total	0	194.293	194.293	4.71	199.003
12	2004-05	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724

		Fir	0	22.228	22.228	0	22.228
		Chil	0	33.027	33.027	232.094	265.121
		B.L	0	49.246	49.246	0	49.246
		Total	0	199.003	199.003	232.094	431.097
13	2005-06	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	265.121	265.121	0	265.121
		B.L	0	49.246	49.246	0	49.246
	•	Total	0	431.097	431.097	0	431.097
14	2006-07	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	265.121	265.121	0	265.121
		B.L	0	49.246	49.246	0	49.246
	Total		0	431.097	431.097	0	431.097
15	2007-08	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	265.121	265.121	0	265.121
		B.L	0	49.246	49.246	0	49.246
	Total		0	431.097	431.097	0	431.097
16	2008-09	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	265.121	265.121	0	265.121
		B.L	0	49.246	49.246	0	49.246
	Total		0	431.097	431.097	0	431.097

17	2009-10	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	265.121	265.121	0	265.121
		B.L	0	49.246	49.246	0	49.246
	Total		0	431.097	431.097	0	431.097
18	2010-11	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	265.121	265.121	0	265.121
		B.L	0	49.246	49.246	0	49.246
		Total	0	431.097	431.097	0	431.097
19	2011-12	Deo	0	24.778	24.778	0	24.778
		Kail	0	69.724	69.724	0	69.724
		Fir	0	22.228	22.228	0	22.228
		Chil	0	265.121	265.121	0	265.121
		B.L	0	49.246	49.246	0	49.246
	•	Total	0	431.097	431.097	0	431.097

APPENDIX-XXI

Sr. No.	Year	Species	Prescribed yield in M3	Balance Deviation as on	Total	Yield removed in M3	Excess or deficit in M3
1	2	3	4	5	6	7	8
1	1993- 94	Deo	0	0	0	13.724	13.724
		Kail	0	0	0	30.135	30.135
		Fir	0	0	0	9.126	9.126

		Chil	0	0	0	0	0
		B.L	0	0	0	0	0
	1	Total	0	0	0	52.985	52.985
2	1994- 95	Deo	0	13.724	13.724	0	13.724
		Kail	0	30.135	30.135	13.565	43.7
		Fir	0	9.126	9.126	0	9.126
		Chil	0	0	0	0	0
		B.L	0	0	0	3.38	3.38
	<u>'</u>	Total	0	52.985	52.985	16.945	69.93
3	1995- 96	Deo	0	13.724	13.724	0	13.724
		Kail	0	43.7	43.7	13.04	56.74
		Fir	0	9.126	9.126	0	9.126
		Chil	0	0	0	1.778	1.778
		B.L	0	3.38	3.38	0	3.38
	T	Total	0	69.93	69.93	14.818	84.748
4	1996- 97	Deo	0	13.724	13.724	0	13.724
		Kail	0	56.74	56.74	13.735	70.475
		Fir	0	9.126	9.126	4.784	13.91
		Chil	0	1.778	1.778	0	1.778
		B.L	0	3.38	3.38	18.519	21.899
	1	Total	0	84.748	84.748	37.038	121.786
	1007			10.50	10.70	2.512	15.050
5	1997- 98	Deo	0	13.724	13.724	3.648	17.372
		Kail	0	70.475	70.475	15.51	85.985
		Fir	0	13.91	13.91	0	13.91

	1	Chil	0	1.778	1.778	0	1.778
		B.L	0	21.899	21.899	3.232	25.131
	<u>.</u>	Total	0	121.786	121.786	22.39	144.176
6	1998- 99	Deo	0	17.372	17.372	0	17.372
		Kail	0	85.985	85.985	0	85.985
		Fir	0	13.91	13.91	0	13.91
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	144.176	144.176	0	144.176
7	1999- 2000	Deo	0	17.372	17.372	1.824	19.196
		Kail	0	85.985	85.985	8.41	94.395
		Fir	0	13.91	13.91	14.754	28.664
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
	1	Total	0	144.176	144.176	24.988	169.164
8	2000- 01	Deo	0	19.196	19.196	0	19.196
		Kail	0	94.395	94.395	0	94.395
		Fir	0	28.664	28.664	0	28.664
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	169.164	169.164	0	169.164
9	2001- 02	Deo	0	19.196	19.196	0	19.196
	02	Kail	0	94.395	94.395	3.55	97.945
		Fir	0	28.664	28.664	0	28.664

		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	169.164	169.164	3.55	172.714
10	2002- 03	Deo	0	19.196	19.196	0	19.196
		Kail	0	97.945	97.945	10.185	108.13
		Fir	0	28.664	28.664	4.783	33.447
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	172.714	172.714	14.968	187.682
11	2003- 04	Deo	0	19.196	19.196	3.648	22.844
		Kail	0	108.13	108.13	45.6	153.73
		Fir	0	33.447	33.447	9.568	43.015
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
	1	Total	0	187.682	187.682	58.816	246.498
12	2004- 05	Deo	0	22.844	22.844	0	22.844
		Kail	0	153.73	153.73	34.065	187.795
		Fir	0	43.015	43.015	0	43.015
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	246.498	246.498	34.065	280.563
13	2005- 06	Deo	0	22.844	22.844	0	22.844
		Kail	0	187.795	187.795	35.415	223.21
		Fir	0	43.015	43.015	0	43.015

		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	280.563	280.563	35.415	315.978
14	2006- 07	Deo	0	22.844	22.844	1.824	24.668
		Kail	0	223.21	223.21	17.245	240.455
		Fir	0	43.015	43.015	0	43.015
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	315.978	315.978	19.069	335.047
15	2007- 08	Deo	0	24.668	24.668	0	24.668
		Kail	0	240.455	240.455	0	240.455
		Fir	0	43.015	43.015	0	43.015
		Chil	0	1.778	1.778	0	1.778
		B.L	0	25.131	25.131	0	25.131
		Total	0	335.047	335.047	0	335.047
16	2008- 09	Deo	0	24.668	24.668	15.41	40.078
		Kail	0	240.455	240.455	17.189	257.644
		Fir	0	43.015	43.015	32.992	76.007
		Chil	0	1.778	1.778	41.429	43.207
		Oak	0	0	0	19.25	19.25
		B.L	0	25.131	25.131	125.672	150.803
		Total	0	335.047	335.047	251.942	586.989
17	2009- 10	Deo	0	40.078	40.078	0	40.078

		Kail	0	257.644	257.644	0	257.644
		Fir	0	76.007	76.007	0	76.007
		Chil	0	43.207	43.207	0	43.207
		Oak	0	19.25	19.25	0	19.25
		B.L	0	150.803	150.803	0	150.803
		Total	0	586.989	586.989	0	586.989
18	2010- 11	Deo	0	40.078	40.078	0	40.078
		Kail	0	257.644	257.644	0	257.644
		Fir	0	76.007	76.007	0	76.007
		Chil	0	43.207	43.207	0	43.207
		Oak	0	19.25	19.25	0	19.25
		B.L	0	150.803	150.803	0	150.803
		Total	0	586.989	586.989	0	586.989
19	2011- 12	Deo	0	40.078	40.078	0	40.078
		Kail	0	257.644	257.644	0	257.644
		Fir	0	76.007	76.007	0	76.007
		Chil	0	43.207	43.207	0	43.207
		Oak	0	19.25	19.25	0	19.25
		B.L	0	150.803	150.803	0	150.803
	•	Total					586.989

Appendix – XXII

HIMACHAL PRADESH GOVERNMENT NOTIFICATION

Dated Shimla-4, the 25th February, 1952.

No. ft.43-241-A/49-2. In exercise of the powers conferred by Section 32 of the Indian Forest Act (XVI of 1927) as applied to Himachal Pradesh read with the Govt. of India, Ministry of States Notification No..146-J, dated the 6th December, 1950, the Chief Commissioner, Himachal Pradesh, is pleased to make the following rules to regulate the following matters in the areas situated in the old Bushahr State which have been declared as protected forests in Himachal Pradesh Government No. Ft.29-241-BB/49 dated the 25th February, 1952.

RULES

1. In these rules unless there is something repugnant in the subject or context:-

"First class protected forests" means and include those forests which are defined and stated as demarcated forests in the Forest Settlements of the Bushashr State viz, Forest Settlement Report of Sutlej Valley and Forest Settlement Report Rupi, Pabar and Giri Valleys in 1921 and 1911 respectively.

"Second class protected forests" means the undemarcated forests or areas other than the demarcated forests and include all tracts of land bearing tree growth or from which the trees have been felled which pay no land revenue as cultivated land.

"Divisional Forest Officer" means the Officer in-charge Upper Bushahr Forest Division or Lower Bushahr Forest Division, as the case may be.

"Record of Rights" and "Record of privileges" means the record of Rights prepared and entered in the Forest Settlement Report of Sutlej Valley in 1921, and the Record of Privileges in Forest Settlement Report Rupi, Pabar and Giri Valleys in 1911 respectively.

"Right-holders" mean persons entitled to exercise of rights or privileges respectively recorded in the record of rights or privileges as mentioned above.

"Trees", "Timber", "Cattle" and "Forest Produce" have the same meaning as respectively assigned to them in the Indian Forest Act (XVI of 1927).

- 2. Except where expressly stated to the contrary, these rules shall apply to the Protected Forests of both the classes.
- 3. The exercise of rights or privileges is restricted to the bonafide requirements of the Right-holders privileges holders. The forest produce obtained in the exercise of the rights or privileges shall not be bartered, sold, or given as a gift or in any other way disposed of by Right-holders or Privilege holders.
- 4. Grant of trees required for building construction by the Right holders or privileges holders will be subject to following condition:-
- (1) In each pargana group of neighbouring parganas a timbers distribution will be held by or on behalf of the Divisional Forest Officer once a year and except in urgent cases, tress will only be granted those zamindars who appear personally on the dates and at the places fixed.

Forest Rangers may issue permits for the grant of trees of the following classes and for the following purposes without previous reference to the Divisional Forest Officer.

- (i) For Nalis, for Gharats and for irrigating fields, trees of all kinds upto 2nd class size except deodar (in Kanwar only III and IV class deodar may be granted) all free of charge, but not more than 10 may be given to any one right-holders. In case of Rupi, Pabar and Giri Valleys one deodar tree not over 6 in girth once in 10 years, or one blue pine tree every other year will be sufficient for each mill.
- (ii) For bridges III and IV class deodar and trees of all sizes of other kinds, all free of charge.

In case of Pabar Valleys, timber will be given for the repair and construction of bridges free, provided that in each case it is certified by the Divisional Forest Officer that the repair and construction of a bridge in question is necessary in the interest of the public in general.

(iii) Dry kail of all classes.

Note:- Dry standing trees of kinds other than deodar and kail are cut free and without a permit.

- (iv) In case of Sutlej Valley up to a maximum of 10, III and IV class trees other than deodar and neoza, for any one person for urgent repairs of houses but not for new buildings.
- (v) Trees of I and II classes of kinds other than deodar when the applicant undertakes to convert them by the saw.

GENERAL NOTE

- (a) All fallen other than deodar is removed free of charge and without a permit.
- (b) Above Ribba and kashang and towards the Tibetan Fronteir, fallen timber of all kinds is removed free of charge and without a permit.
- (c) From Pangi and Ribba and towards the Tibetan border one branch of a gnarled and branched deodar or neoza tree count as a III or IV class pole in order to conserve the timber supply, which is limited.
- (2) Written notices of the dates and places fixed fro the timber distribution will be circulated in advance by the Range Officers to the zaildars and lambardars.
- (3) In urgent cases, as for instance, if a house is burnt or falls down, the zamindars may apply to the Divisional Forest Officer in writing either personally, or through the Range Officers, at any time. On such applications Range Officers will report at once and state actual requirements and forest from which to be met. Range Officers will issue permits, immediately according to their powers under (1) above.
- (4) The fee to be paid by Zamindars for trees are as follows: -

TRACTS IN SUTLEJ VALLEY

(tor	each	tree)
------	------	-------

For Deodar trees of less than three haths in girth,	Rs.	As.	Ps.	
measured at three haths from the ground.	0	8	0	
For Deodar trees over three haths but less than				
four haths in girth, measured at three haths				
from the ground.	2	0	0	
For Deodar trees over four haths but less than				
five haths in girth, measured at three haths				
from the ground.	2	8	0	
For Deodar trees over five haths but less than				
six haths in girth, measured at three haths				
from the ground.	4	0	0	
For Deodar trees of six haths or over in girth,				
measured at three haths from the ground.	5	0	0	
For walnut trees.	1	8	0	
For Kail trees and neoza trees under two				
haths in girth.		0	2	0
For Kail trees and neoza trees from two to				
three haths in girth.	0	4	0	

For Kail trees and neoza trees from three to

four haths in girth.	0	8	0
For Kail trees and neoza trees from four to			
Five haths in girth.	1	8	0
For Kail trees and neoza trees over five			
haths in girth.		2	0
For chil trees.		0	4
For rai and tosh trees.		0	2
TRACTS IN RUPI, PABAR AND Blue pine: -	GIRI V	ALLE	YS
For a tree not exceeding 2 haths (3 feets) in girth	Rs.	As.	Ps.
at 4 feet inches from the ground.	0	2	0
For a tree not exceeding 2 haths but not exceeding			
3 haths (4 feet 6 inches).	0	4	0
For a tree not exceeding 2 haths but not exceeding			
4 haths (6 feet).	0	6	0
For a tree not exceeding 4 haths in girth.	0	8	0
Deodar: -			
For a tree not exceeding 2 haths (3 ft.) in girth at			
For a tree not exceeding 2 haths (3 ft.) in girth at 4 feet 6 inches from the ground.	0	8	0

4 haths (4 feet 6 inches).

For a tree not exceeding 3 haths but not exceeding

4 haths (6 feet). 8 0 For a tree not exceeding 4 haths but not exceeding 5 haths (7 feet 6 inches). 0 0 For a tree not exceeding 5 haths. 0 Chil pine: -8 For trees of all sizes. 0 0 **Other Species:-**For trees of all sizes. 0 2 0

permits are granted shall stand confiscated to Government.

- (5) The above fees must be paid at the time grants are made. As good trees as are available will be marked for the grantees as soon as possible thereafter and any trees which are not removed from the forest within one year of the date on which the
- (6) In exceptional cases, such as the burning or falling down of a house or on account of the grant of unsound or malformed trees, it will rest with the Divisional Forest Officer to modify or remit the fees details in rule 4 above.
- (7) In Sutlej Valley when zamindars to whom trees are granted convert their timber with the saw instead of with the axe, the fees paid by them for all such trees, will be refunded. The fact of saws having been used must be certified by the Forest Guard and lambardar.
- (8) In order to encourage the use of the saw and thereby prevent waste of valuable timber, a limited number of saws will be kept by the Forest Deptt. in each Range and lent by the Range Officers to persons who do not posses saws of their own.
- 5. Trees for upkeep of temples or "Thkurdwaras" will be given free for each "Deota" "Thkurdwara" or "Mani Phani" and for each new house built, and for certain religious ceremonies a number not exceeding four small blue pine. Spruce, Silver fir, or birch poles annually for "Parahi" in Baisakh "Darchat", and "Shurgam" and upto four small blue pine or oak poles fro "Chui" in Phagan.

At the time of the "Phulaich" fair for each village one Kail or neoza tree of girth not exceeding 3 haths at breast height may be cut.

At the "Dakrain" fair one branch of a neoza tree may be cut for each child for "Shoshul Poosha".

- 6. The right-holders may collect "Nirgal" (j) bamboos for making kiltas and baskets required for their own domestic and agricultural requirements and for sale.
- 7. The right holders may fell malformed, small and inferior kail and rai previously marked for purposes of making hay ricks, and poles required for agricultural pursuits after obtaining permission of the Forest Range Officer.
- 8. Right holders may collect slates from existing quarries and scattered rocks for their own domestic and agricultural requirements as well as fro sale within the State. Starting of new quarries without permission is prohibited.
- 9. Right holders may graze such cattle, sheep and goats as are required by them for their domestic and agricultural needs. In the forests lying in Chini Tehsil, Sheep and goats used for carrying loads, yaks donkeys and Ponies are also allowed to graze during the whole year.

They may obtain free of charge trees of kinds other than deodar for making "Karling" or feeding the watering troughs provided that no Kail trees of girth at breast height of more than six feet shall be granted.

- 10. Right holders may cut grass without permission.
- 11. Lopping is prohibited except: -
- (a) Trees of broad leaved species for fodder and bedding for cattle and broad leaved trees other than ash (Angah), Walnut, Shisham and box for fire wood.
- (b) Bluepine, Spruce, Silver Fir and Neoza for manures, litter, firewood and charcoal for the manufacture and repair of agricultural implements, provided that no trees under 2 haths in girth at 4 feet 6 inches from the ground will be lopped and the lopping is restricted to the lower half of the trees. The privilege is liable to be withdrawn at any time.

- 12. The right holders may collect dry and fallen wood for fuel for personal use and for sale, and remove all fallen trees, except deodar, and fell and remove ddry standing trees except deodar and blue pine and lop dead branches of all trees. They may also remove thorny shrubs and such trees as may be marked by the Forest Department for such purposes.
- *Note:* Villages lying between the Kashang nullah and Tibet and between and including the Ribba village and Tibet may remove fallen deodar trees for building timber and for firewood.
- 13. Burning ghats for cremation purposes admitted as such in the settlement will be permitted to be used as such.
- 14. The right-holders may collect fallen coniferous needles and leaves of broad leaved trees for bedding for cattle and manure.
- 15. Construction of new water mills and water channels is prohibited except with the permission of the Government. Old ones may be maintained and repaired.

Trees of species other than deodar may be obtained free for repairs of channels of water mills and irrigation channels and stumps of forked deodar trees for existing oil presses; such trees being marked by the forest guard in order to avoid delay.

- 16. Right-holders may collect fruits, edible seeds, neoza and other seeds, flowers, roots and leaves and small branches for the preparation of dyes, medicines and incense and honey and sell such products without hindrance.
- 17. Bark from broad-leaved species may be remover for tanning purposes but in such a way and to such an extent as not to endanger the life of the tree. In Chini Tehsil, it may likewise be removed from kail and neoza trees for lids of mild churns, from yew trees for making tea, from birch trees for roofing materials, for making paper and for prayers and from deodar and other trees for making incense.
- 18. Right-holders may cut and remove for burning the dead and construction of biers two trees, deodar excepted, not exceeding 2 haths in girth at 4 feet 6 inches from the ground provided that notice of such cutting shall be given to the local forest guard within 15 days from the date of cutting. They may also cut wind fallen deodar for making "Tabut" or "Manji" for coffins for the dead.

- 19. In Chini Tehsil, right holders may cut for vine-yards and for narrow frames branches of the kail, neoza and trees other than deodar may obtain deodar poles for the above purpose at the same rate as for building timber.
- 20. Right-holders have the recorded right of way for men and cattle along foot paths and roads to villages, alpine pasture water springs, cremation grounds or grounds used for annual fairs and to obtain trees other then deodar, free for the repairs of bridges on application to the local Range Officer.
- 21. Right-holders may cut and collect for personal use and for sale to agriculturists within the old Bushahr State torch wood and to extract resin from :-
- i) all dry standing trees except deodar.
- ii) all green and dry fallen trees except deodar.
- iii) malformed blue pine trees especially marked for the purpose; and,
- iv)stumps of all felled trees, provided the marks, if any, applied by the forest officers are left intact.
- 22. Right-holders may collect earth for plastering purposes and stone for building purposes and iron for smalting from existing quarries.
- 23. Right-holders may keep cattle on the thaches included in the forests.
- 24. Right-holders may cut and sell to Agriculturists within the old Bushahr State oak and other broad leaved trees for the preparation of ploughs, other agricultural implements and domestic utensils; and also conifers, deodar excepted, for plough handles (Sainji, Sohaga and poles for ricks Tulatu). No tree thus used to exceed one hath in girth at 4 feet 6 inches from the ground except broad leaved trees used for making a plough share or "hal" for which larger trees are used.
- 25. Right-holders may cultivate fields situated within the forest boundaries and admitted at the time of the Forest Settlement.

- 26. The right enumerated in the above rules may be exercised by the proprietors of cultivated land assessed to land revenue and by their agricultural tenants in undemarcated forests without permission, provided the recognized customs and usages of the villages concerned are respected. In all cases of dispute the Divisional Forest Officer will be the arbitrator.
- 27. Non-agricultural residents, travelers, traders and others may exercise such of the above privileges as the Divisional Forest Officer may determine provided such exercise in no way interferes with the right of agricultural residents.
- 28. Land for new cultivation will be granted by the Deputy Commissioner in accordance with the Nautor rules sanctioned by Government.
- 29. The Right-holders may collect and remove from the rivers and their tributaries pieces of standed timber bearing no brands, saw marks or axe cuts and which are not larger than one man can carry away.
- 30. Nomadic or gaddi shepherds and cattle owners may only graze their flocks in the recognized pastures and during the recognized months in accordance with the orders that may be issued from time to time by the Divisional Forest Officer.

By Order, Sd/for Chief Conservator of Forests & Secretary (Forest Deptt.) to the Chief Commissioner, Himachal Pradesh Administration.

No. Ft.43-241-A/49-2. Dated Shimla-4, the 25th February, 1952.

Copy forwarded to :-

- 1. All Deputy Commissioners in Himachal Pradesh.
- 2. All Conservators of Forests, in Himachal Pradesh.
- 3. All Divisional Forest Officers in Himachal Pradesh for information.
- 4. The Manager, Govt. of India Press, Shimla, for favour of publication in Part III Section 3 of Govt. of India Gazette.

Sd/for Chief Conservator of Forests & Secretary (Forest Deptt.) to the Chief Commissioner, HP

Appendix No- XXIII

HIMACHAL PRADESH FOREST DEPARTMENT NOTIFICATION

Dated Shimla-4, the 25th February, 1952.

No. Ft.29-241/B/B/49.—In exercise of the powers conferred by Section 29 of the Indian Forest Act (XVI of 1927) as applied to Himachal Pradesh read with the Govt. of India, Ministry of State Notification No. 146-J dated the 6th Dec., 1950, the Chief Commissioner, Himachal Pradesh is pleased to declare the provision of chapter IV of that Act applicable to all Forest lands or waste lands in Himachal Pradesh which are the property of Government or over which the Government have proprietary rights or to the whole or any part of the produce of which the Government is entitled as recorded in the Forest Settlements or land revenue Settlements or land revenue records of the integrated states, otherwise, except to the following areas: -

- (1) Rantu, Saliana, Chambi Kupar, Kalala and Tomru of Kotkhai illaqa and Nagkelu of Kotgarh illaqa declared as reserved forests in the Punjab Govt. Notification No. 175, dated the 15th April, 1885.
- (2) Chamba State Forests declared reserved forests vide Chamba Darbar's Notification No. W 76-43 dated the 10th November, 1943.
- (3) Sirmour State Forests declared reserved forests, in Sirmour Darbar's Notification: -

(i) No. 1 dated the 17th Jaith, 1958	Bikrami.
(ii) No. 2 dated the 23rd Chait, 1991	-do-
(iii) No. 14 dated the 17th Jaith, 1990	-do-
(iv) No. 38 dated the 27-12-1992	-do-
(v) No. Nil dated the 1st Chait, 1937	-do-
(vi) No. Nil dated the 1st Chait, 1947	-do-

(vii) No. II dated the 2nd Poh, 1949 -do-

(viii) No. I dated the 17th Jaith, 1952 -do-

(ix) No. Nil dated the 11th Bhadon, 1982 -do-

2. This Notification applies to all lands in old Mandi State containing the growth except such lands as have been excluded in the Forest Settlement as cultivated or as in the Malguzari of a private person.

By Order CCF and Secy (Forest Department) to the Chief Commissioner, H.P. Admn.

APPENDIX-XXIV

HIMACHAL PRADESH GOVERNMENT FOREST DEPARTMENT

NOTIFICATION

Dated Shimla-4, the 25th February, 1952.

No. Ft.29-241/BC/49. In exercise of the powers conferred by clause (a) of Section 30 of the Indian Forest Act (XVI of 1927) as applied to Himachal Pradesh read with the Government of India, Ministry of State Notification No. 146-J dated the 6th Dec., 1950, the Administrator (Lieutenant Governor), Himachal Pradesh is pleased to declare all trees in the forests declared protected by Himachal Pradesh Government Notification No. Ft.29-241-BB/49 dated the 25th February, 1952 to be reserved with effect from 1st January, 1964.

2. With effect from the said date i.e. 1st January, 1964 the Himachal Pradesh Government (Forest Department) Notification No. Ft.29-241-BB/49 dated the 25th February, 1952, on the subject will stand superseded, but this will not effect the previous operation of the said notification or anything duly done or suffered there under.

By Order

CCF and Secretary (Forest) to the

Government of Himachal Pradesh

No. Ft.29-241/BC/49(M)

Dated Shimla-4, The 13.11.63

Copy forwarded to the:-

- (1) All Deputy Commissioners in Himachal Pradesh for information and displaying its translation in Hindi in the locality.
- (2) All Conservators of Forests, Himachal Pradesh.
- (3) All Divisional Forest Officers in Himachal Pradesh.

(4) The Manager, Himachal Pradesh Government Press, Shimla for favour of publication in Himachal Pradesh Rajpatra.

Secretary (Forest) to the Government of Himachal Pradesh

Appendix No.-XXV

No. Ft. 48-66/83 (FCA) HP Forest Department Dated Shimla the 20-April-2010

From:- PCCF, HP.

To:- All CFs (F & WL).

Sub:- Road Co

Road Construction-Applicability of FCA

Memo:

It has been decided at Govt. Level that:-

1. As a general rule cases for providing multiple or dual connectivity to villagers would not be accepted by the Forest Department. Once a particular Village/Habitation has been provided motorable connectivity no case for diversion of forest land for providing a second road to this Village/Habitation would be considered unless there are some exceptional reasons for the same (reduction of distance would not be a valid reason by itself).

- 2. The policy of the State Government and the Public Works Department is to provide connectivity to villages with a population of at least 250. Proposals for diversion of forest land for Habitation Units with a population below 250 would not normally be considered by the Forest Department. However, if the proposal involves connectivity for a cluster of Villages/Habitation which together comprise a population of 250 or more then such a proposal would fall within the policy and could be considered.
- 3. Under MN REGA some of the DFOs are including the component of "connectivity" which may translate in to construction of roads through forest land. Forest Department is basically required to undertake forestry activities like afforestation, water harvesting structure and Van Sarovar etc. under MN REGA and not construction of roads. It must be clearly understood that construction of forest road for forest management and road construction by Forest Department are two entirely different things and Forest (Conservation) Act should not be violated in the name of connectivity under

MNREGA or from any other source of fund. It is made clear that the road not exclusively meant for forest management will certainly attract provisions of FCA.

Pr. CCF, Shimla H.P

Appendix No.- XXVI

No. Rev.B.A.(4)8/2004-Loose Government of Himachal Pradesh Department of Revenue From

F.C-Secretary (Revenue) to the Government of Himachal Pradesh

To

- The Divisional Commissioners Shimla/Mandi/Kangra at Dharamshala, H.P.
- 2. All the Deputy Commissioners in Himachal Pradesh.
- 3. The Sattlement Officer, Shimla/Kngra at Dharmshala, H.P.
- 4. All SDO (Civil), in Himachal Pradesh
- 5. All Tehsildars/Naib Tehsildars in Himachal Pradesh

Dated Shimla-2, the 21-4-2006

Subject:- Clarification regarding implementation of notification issued by the Forest Department in the year of 1952. Sir,

I am directed to say that issue regarding applicability of provisions of notifications of notification issued in the year 1952, by the Forest Department, under Indian Forest Act, 1927, was under consideration of the Government and a Committee under the Chairmanship of Chaudhary Dhani Ram, IAS (Retd.) was constituted by the Government to examine the implications arising out of notification issued by the Forest Department on 25.2.1952 and subsequent notifications and interim direction/order issued by the Hon'ble Supreme Court dated 12.12.1996 in WP(Civil) No.202 of 1995 in case Shri T.N. Godavarman Thrimulkapad Vs. Union of India and Ors.

The recommendations of the said Committee were also examined by a Sub-Committee constituted under the Chairmanship of the Director, Land Record in which the representatives of the Forest Department and Revenue Department were associated as members.

Thereafter, the matter has been examined at length at Government level in consultation with the Law Department and it has been concluded / decided that notification issued in the year 1952 by the Forest Department under the provisions of Indian Forest Act, 1927 will not apply to the lands vested in the State Government under the provisions of the H.P. Ceiling on Land Holdings Act, 1972 and H.P. Village Common Lands vesting and Utilization Act, 1974 as the land vested under these statutes was belonging to the people before of weaker section of the society as per schemes framed under these statutes to achieve the objective behind the enactment of aforesaid enactments However, if any land, which was recorded as forest land in revenue record before vestment then even after vestment such land shall continue to be treated as Forest land and the provisions of Indian Forest Act 1927 and the Forest (Conservation) Act, 1980 are applicable on such land and such land can be utilized for non-forest purpose law shall also apply to surplus area in any which has been demarcated by the Forest Department in consultation with the Revenue Department in terms of clause 8 of the H.P. Utilization of Surplus Area Scheme, 1974.

In view of above decision, you are request to direct the field agencies that despite the notification issued in the year 1952 by the Forest Department, the provisions of Indian Forest Act, 1929 and Forest Conservation Act, 1980 will not apply to the lands vested in the State Government under the provisions of the H.P. Celling on Land Holdings Act, 1974 unless any land which vested in the State Government under the aforesaid enactments was recorded as forest land in the revenue record before vestment or any land which has been demarcated by the Forest Department in consultation with the Revenue Department in terms of clause 8 of the H.P. Utilization of Surplus Area Scheme, 1974.

Yours faithfully,

Deputy Secretary (Revenue) to the Government of Himachal Pradesh.

Endst. No. As above

Copy forwarded for information and necessary action to:-

- 1. The Principal Secretary (Forest) to the Government of Himachal Pradesh, Shimla-2.
- 2. The Principal Chief Conservator of Forest, H.P. Shimla-9
- 3. The Director, Land Records H.P. Shimla-9.
- 4. The ALR-cum Under Secretary (Law –opinion) to the Government of Himachal Pradesh Shimla-2.
- 5. The COC to the Financial Commissioner (Appeals) to the Government of H.P. Shimla-2.

Deputy Secretary (Revenue) to the Government of Himachal Pradesh

APPENDIX-XXVII

(Authoritative English Text of this Department notification number FFE-B-E(3)-43/2006-Vol-I dated 2/1/2010 as required under clause (3) of article 348 of the constitution of India)

Government of Himachal Pradesh Department of Forest

No. FFE-B-E(3)-43/2006-Vol-I Dated: Shimla-171002, 2nd January, 2010

NOTIFICATION

Whereas, the draft Himachal Pradesh Forest (Timber Distribution to the Right Holders) Rules, 2009 were published in the Rajpatra, Himachal Pradesh Extra Ordinary on 14.10.2009 vide Notification of even number dated 13.10.2009 for inviting objections and suggestions from persons likely to be effected thereby within a period of 21 days from the date of publication.

Now, after receipt and analyzing the objections/suggestions received from the concerned parties, in exercise of the powers conferred by clause (L) of section 32 of the Indian Forest Act, 1927 (16 or 1927), the Governor of Himachal Pradesh is pleased to make the following rules namely:-

- 1. Short title These rules shall be called the Himachal Pradesh Forest (Timber Distribution to the Right Holders) Rules, 2010.
- 2. **Definitions-** (1) In these rules, unless the context otherwise requires-
- (a) Government means the Government of Himachal Pradesh;
- (b) The term below poverty line shall have meaning as assigned to it by the Department of Panchayat Raj, Himachal Pradesh;

- (c) Right Holder means a person entitled to exercise rights recorded in the record of rights as per the Forest Settlement Report of the area concerned;
- (d) Record of rights means rights recorded in the Forest Settlement Reports;
- (e) Timber Distribution means the policy of distribution of timber to the right holders as per record of rights recorded in the Forest Settlement Reports and
- (f) Timber Distribution Rights means right of a Right Holder having cultivable lands for grant of timber for construction of residential house and cow shed etc. for bonafide domestic use of the Right Holder, recorded in the Forest Settlement Report of the area concerned;
- (2) All other words and expressions used but not defined in these rules shall have the meaning assigned to them in the Indian Forest Act, 1927.
- **3. Entitlement-** Timber shall be granted to the Right Holders who have their recorded rights in the concerned Forest Settlement Reports for grant of Timber Distribution for construction/maintenance of residential house, cow sheds etc. for bonafide domestic use:

Provided that:-

- (i) no Timber Distribution shall be granted in urban area:
- (ii) no Timber Distribution shall be granted if trees to meet the requirement of timber for construction of residential house, cowshed etc. are available on the land holdings of the Right Holder concerned. However, he shall have the right to fell trees from his own land as per the provisions of the Himachal Pradesh Land Preservation Act, 1978 and rules made there under;
- (iii) no Timber Distribution shall be granted for 10 years if the right holder has sold trees yielding timber for construction of housed from his private land holding;

- (iv) in case right holder has land holding at more than one place, he shall have option of getting Timber Distribution at one place only. For this purpose a right Holder shall submit an affidavit clarifying therein his rights of Timber Distribution at different places and his place of option for getting Timber Distribution. Option once exercised shall not be allowed to be changed.
- (v) With effect from the date of notification of these Rules, no Timber Distribution shall be granted to a land owner who has purchases land after obtaining the permission of the Government under section 118 of the Tenancy and Land Reforms Act, 1972, irrespective of the date of purchase of such land.
- (vi) Timber Distribution shall be granted only to the head of the family as per the revenue records;
- (vii) Timber Distribution shall not be granted for the construction/maintenance of buildings to be used for commercial and hiring purposes;
- (viii) Timber Distribution shall not be granted to the Right Holders, if trees for the purpose are not available silviculturally in the forest where concerned right holders have Timber Distribution right.
- (ix) Timber Distribution shall be subject to cooperation and participation of Right Holders in forest conservancy. In case any Right Holder fails to perform his duties for apprehending offenders, extinguishing fire or commits any forest offence as contained in the Forest settlement Report, his right of timber Distribution shall be suspended up to 10 years; and
- (x) Timber Distribution Right of a Right Holder shall be suspended up to 10 years if he is found to have mis-utilized the Timber Distribution grant or committed any forest offence until he is eligible again for Timber Distribution.
- **4. Quantity:** (1) Timber Distribution shall be granted in converted form from the depots to be specified separately as per scale fixed below:-
- (i) for construction of new house =3 cubic meters; and
- (ii) For maintenance = 1 cubic meter.

- (2) Timber Distribution shall be given from salvage (fallen, dry standing), silviculturally available green trees in the order of preference.
- 5. Periodicity: The periodicity for grant of Timber Distribution to the Right Holders will be as under:-
- (i) For new construction once in life time or 30 days whichever is later;
- (ii) for additions/alterations- once in 15 years; and
- (iii) sufferers of natural calamities/fire sufferers: as per actual requirement as recommended by the Sub Divisional Officer (Civil) and after personal verification by the ACF/DFO concerned subject to the grant not exceeding the maximum limit prescribed under rule-4.
- **6. Rates: -** The rates to be charged from the different types to right Holders for grant of Timber Distribution will be as under:
- (i) Right Holders above poverty line- 30% of the rates at which timber is sold by the Himachal Pradesh State Forest Development Corporation Ltd commercially;
- (ii) Right Holders below poverty line- 10% of the rates at which timber is sold by the Himachal Pradesh State Forest Development Corporation Ltd commercially; and
- (iii) Right Holders suffering from natural calamities-Free of cost.
- **7. Priority for grant of Timber Distribution: -** Priority for grant of Timber Distribution shall be given to the Right Holders belonging to Below Poverty Line. Right Holders above poverty line shall be g ranted Timber Distribution on first come first served basis.
- **8. Procedure for grant of Timber Distribution: -** Application for grant of Timber Distribution, on the form appended to these rules as Annexure-I shall be submitted by Right Holder (s) to the Panchayat concerned after getting necessary remarks from the patwari concerned. The Panchayat after ascertaining genuineness of the requirement of the Right Holders shall pass resolution in the Gram Sabha of the Panchayat indicating actual quantity of requirement of Timber Distribution of the individual (s) concerned. After resolution recommending grant of Timber Distribution is passed by the concerned Panchayat,

right holders shall submit his Timber Distribution application to the Forest Guard of the area who shall enter the same in the register maintained for the purpose and issue receipt of the application to the Right Holder. He shall send his recommendations to the Block Officer after ascertaining the genuineness of demand, who in turn shall submit his recommendations to the Range Officer. After receipt of Timber Distribution application from the Range Officer, the Divisional Forest Officer shall take action for sanction of the Timber Distribution after satisfying himself about the genuineness of the requirement and silvicultural availability to trees/timber in the concerned forest and intimate his decision/ Timber Distribution grant to the Right Holder concerned on the proforma appended to these rules as 'Annexure II'. A schedule for grant of timber Distribution shall be framed and notified for publicity to all panchayats and other functionaries in the forest Division by the Divisional forest Officer.

- **9. Time schedule for grant of timber Distribution:-** The right holders shall apply for grant of Timber Distribution through concerned Panchayat to the concerned forest guard by 31st March of each year. The application shall be processed and Timber Distribution shall be given to eligible right holders between September to December of the year as per procedure under rule 8 and no Timber Distribution shall be granted thereafter for that year.
- 10. Jurisdiction of the use of Timber: Timber granted under these rules shall be allowed to be carried within revenue estate without obtaining any permission after affixing of Timber Distribution hammer and if the timber is to be carried out from one estate to another, the Right Holder shall have to obtain a permission from the Range Officer concerned for this purpose. Timber granted shall be utilized by the Right Holder within a period of maximum one year. In case, Timber Distribution grant could not be utilized within the specified period, concerned Divisional Forest Officer shall grant extension for its use based on the genuineness of the case. The Divisional Forest Officer shall ensure through his staff that the Timber Distribution grant is used for the purpose for which it was sanctioned. In case, Timber Distribution grant is not utilized during the permissible period, the same may be seized by the Forest Department and the decision taken by the Divisional Forest Officer relating to grant to Timber Distribution shall be final.

- 11. Depot: The depots from where Timber Distribution in converted form shall be supplied to the right holders shall be notified by the Divisional Forest Officer every year. Any change during the next year in the place of these depots shall also be notified. These notifications shall be widely circulated up to the Panchayat level by the Divisional Forest Officer.
- **12. Size and dimensions of Timber Distribution timer:** The Timber Distribution timber shall be converted and sold in different sizes other than standard sizes made by Himachal Pradesh State Forest Development Corporation Ltd for commercial purpose.
- 13. Monitoring of data base and checking: The data regarding details of right holders, options exercise by the right holders, Timber Distribution granted, utilized, etc. shall be maintained and monitored Panchayat and range wise by the Divisional Forest Officer concerned. This data shall further be monitored and evaluated by Chief Conservator of Forests (Monitoring and Evaluation) at Sundernagar and annual report sent to Principal Chief Conservator of Forests, Himachal Pradesh.

14. Penalty and Punishment:- The right holders who-

- (i) misuse of Timber Distribution for commercial purpose;
- (ii) sells Timber Distribution.
- (iii) transports timber outside the jurisdiction of Revenue estate without permission;
- (iv) Utilizes Timber Distribution after the time schedule given in permit has expired; and
- (v) do not participate in the duties enshrined in the Forest Settlement Report along with rights, shall be penalized as per relevant provisions of Indian Forest Act, 1927, in addition to suspension of their rights for such period as may be determined by the concerned Divisional Forest Officer.
- **15. Repeals and savings: -** (1) The existing rules, notifications, directions and instructions framed and issued by the Government or Himachal Pradesh Forest Department concerning the Timber Distribution to the Right Holders are hereby repeated and rescinded.

(2) Notwithstanding such repeal or recession any action taken or anything done under the rules so repealed and notifications, directions and instructions framed and issued so rescinded shall be deemed to have been taken or done under the corresponding provisions of these rules.

Form (See rule-8)

Annexure-I

PROFORMA FOR APPLICATION FOR GRANT OF TIMBER DISTRIBUTION

- 1. Name of Applicant
- 2. Occupation
- 3. Father's Name
- 4. No. of family members
- 5. Is the applicant head of family
- 6. Village
- 7. Post Office
- 8. Tehsil
- 9. District
- 10. Panchayat
- 11. Whether the applicant belongs to 'below poverty line' family. If yes, enclose attested copy of certificate issued by the competent authority.
- 12. Year in which Timber Distribution was earlier granted and quantity/No. of trees granted.
- 13. Purpose for which Timber Distribution required (whether for new construction of residential house/cowshed or for maintenance).
- 14. Details of Timber Distribution required:

Spe	Vol	Na	
cies	ume	m	

	in	e
	Cub	of
	ic	fo
	met	re
	er	st
		\mathbf{w}
		he
		re
		rig
		ht
		exi
		sts
15. I, hereby declare that: -	•	

- Timber Distribution requirement is not for construction/maintenance of house located in urban area;
- trees to meet the requirement for construction/maintenance of house/cowshed are not available on my land;
- (iii) I have not sold any trees from my land under the 10 year felling programme during the last 10 years;
- (iv) I have land holding at only one place/more than one place i.e. at _____ regarding my option for getting Timber Distribution at . An affidavit has been submitted to the Divisional Forest Officer, /enclosed herewith;
- (v) I am the original right holder and also the head of the family;

- (vi) I have not purchases land after obtaining the permission of the Government under Section 118 of the Tenancy and Land Reforms Act, 1972;
- (vii) I shall not use timber granted to me for the purpose of construction/maintenance of house to be used for commercial/hiring purposes;
- (viii) I understand that rights and concessions including Timber Distribution rights are subject to co-operation and participation of right holders in forest conservancy and I shall perform my duties for apprehending forest offenders, extinguishing fire etc. and
- (ix) I shall not misuse the Timber Distribution grant and abide by the rules/instructions of the Forest department in this regard.

(Signature of applicant) Dated	Name in block letters	
Verification/report of Panchayat		
It is certified that Sh.	_S/o Sh	is a permanent resident of village
Mauza	and is head of the family.	. The requirement of timber of the applicant is
genuine and he requires	Cum of timber for construction	on/maintenance of his house/cowshed. A copy of
resolution passed by the Panchayat in t	his regard is enclosed.	
	Seal & Signature	e of

Pradhan Gram Panchayat

Report of Patwari

Dated

Certified that Sh	S/o		is a permanent resident of
Mauza	Applicant is owner of	the cultivable land comp	orising Khasra number
measuring	and pays	amount of Rs.	per annum as land revenue and has a
right to obtain trees in T.D.	He is head of the family.		
Dated	5	Signature Halqua Patwari	
Report of Forest Guard:			
(i) The applicant has not	obtained timber under Timbe	er Distribution for constr	nuction of new residential house/cowshed
during his life time/for the last 30 years/the applicant has not obtained timber under Timber Distribution for maintenance of			er Timber Distribution for maintenance of
residential house/cow shed f	for the last 15 years.		
(ii) Applicant has not sold	any trees from his land during	the last ten years under	10 years felling programme.
(iii) Applicant does not have trees standing on his own private land.			
(iv) The applicant has not caused any loss/damage to forest wealth/encroached forest land and no damage report/FIR/court			
case relating to any forest of	fence is pending against him.		
(v) The requirement of time	iber is on account of		
(vi) The applicant extends full cooperation in protection of the forest.			
(vii) The applicant may be s	sanctionedc	cum converted timber of	species from
depot.			
(viii) Timber recommended	for grant in Timber Distribution	on are silviculturally avai	lable in the forest where right of the right
holder exists.			
Signature			
Forest Guard			

	Beat
Report of Block Officer (Deputy Ranger):	
(i) Certified that the contents of the application and the certifica	tes given by the beat guard are correct.
(ii) I have visited and inspected the site of construction of no	ew residential house/cow shed/maintenance of residential
house/cow shed, where Timber Distribution grant is proposed to b	e utilized and also the forest on spot and the applicant may
be grantedCum of timber ofspecies	n converted form which is silviculturally available from
forest.	
Signature	
Block Officer, Block Report of Range Officer:	
The requirement of the applicant is genuine and he may be g	ranted Cum timber of
species from the Depot for which trees a	
	ic sirviculturally available.
Signature Forest Range Officer .	
<u>——</u>	
Sanction by DFO	
Cum timber ofspecies fromI Signature	Depot is hereby granted to he applicant.
Divisional Forest Officer	
Forest Division	
Form	
(See rule-	, , , , , , , , , , , , , , , , , , ,
No.	Annexure-II
Himachal Pradesh Forest Department	

From
Divisional Forest Officer,
— Forest Division,
To Sh. /C
Sh./Smt N'iller a Part Office
Village Post Office
Tehsil —Distt.
Dated Subject: Grant of Timber Distribution.
Sir,
Please refer to your application dated .
2. Your application for grant ofcum timber ofspecies for
construction/maintenance of house/cow shed has been considered by the undersigned and it is decided to sanction TD
measuring(cum) ofspecies fromDepot for the construction/maintenance of
house/cowshed. The timber4 shall be lifted shall be lifted from the depot within months from the date of sanction and shall
be utilized within months or within the extension granted, if any, otherwise the timber obtained by you in T.D. is liable to be
seized.
OR
that your TD application has been considered and rejected on the following grounds:-
Yours faithfully,
Divisional Forest Officer
Forest Division

Endst. No.	Dated	
	Copy forwarded to Range Officer	for information and necessary action.
Divisional Fo	orest Officer,	
Forest Division	on,	
By Order,		
Addl. Chief S	Secretary (Forests) to the	
Government	of Himachal Pradesh	
Endst. No.	Dated	
	Copy forwarded for information and necessary	y action to:

- All Administrative Secretaries to the Govt. of H.P.
- 2. The Principal Chief Conservator of Forests, H.P. Shimla-1.
- 3. The Principal Chief Conservator of Forests, Wildlife, H.P.
- 4. The Managing Director, HP State Forest Dev. Corporation Ltd., SDA Complex, Kasumpti, Shimla-9.
- 5. All the Adll. Principal CCFs/CCFs and Conservators of Forests/Divisional Forests Officers in Himachal Pradesh.
- 6. All heads of the Departments in Himachal Pradesh.
- 7. The Controller, H.P. Printing & Stationery Department Ghora Chowki Shimla-5 for publication in Rajpatra (Extra ordinary). Five copies of the same be sent to this Department.
- 8. All the Deputy Commissioners in Himachal Pradesh.
- 9. The Under Secretary (Finance) to the Govt. of Himachal Pradesh Shimla-2.
- 10. The DLR-cum- Deputy Secretary (Law) to the Govt. of H.P. Shimla-171002.
- 11. Guard file.
- 12. Spare copies(50)

Deputy Secretary(Forests) to the Government of Himachal Pradesh.

Appendix No- XXVIII

(Authoritative English text of the Department Notification No. FFE-B-A (3)-3/2010 dated 05-05-2010as required under Article 348(3) of the constitution of India)

Government of Himachal Pradesh Forests Department

NOTIFICATION

Dated: 05-05-2010

No.FFE-B-A (3)-3/2010

In exercise of the powers conferred by Section 68 of the Indian Forest Act, 1927 read with directions issued by the Hon'ble High Court of Himachal Pradesh vide its judgment dated 28.8.2009 in COPC No. 56/2009, titled as Kuldip Singh Chauhan Vs Balbir Singh and others and in supersession of all the previous guidelines issue on the the Governor, Himachal Pradesh is please to empower all the Range Officers in charge of the ranges to compound forest offences and to accept compensation and / or release the seized property as mentioned in the aforesaid section. The regulation of the compounding of forest offences, disposal of the cases of illicit felling and other forest offences shall be as under:-

- **1. Cases not liable to be compounded:-** The following are the cases which shall not be compounded namely:
- i) Illicit transport of resin, timber, katha and bamboos a irrespective of magnitude of offence
- ii) Cases of habitual offenders i.e. an offender who commits more than one offence during the year.
- iii) Illicit encroachment of forest land
- iv) Where an individual / right holder/saw miller is in possession of unaccounted timber, resin, Katha for which satisfactory proof of procurement is not given by him.
- v) Where value of forest produce is more than two lacks.
- vi) Illegal establishment of depot and illegal running of saw mills.

- vii) Deliberate causes of forest fire.
- viii) Illegal purchase and sale of timber.
- ix) Cases under Section 62 and 63 if Indian Forest Act, 1927.
- x) Cases of shifting /uprooting/intentionally damaging the forest boundaries pillers.
- xi) The facing of hemmer marks and,
- xii) Infringement on the stipulation in imposed by Government of India while granting permission under forest conservation Act, 1980 and rules frames thereunder.

2. Cases which may be compounded:-

- (1) Forest Offences cases of right holders in the following circumstances can be compounded:-
- a) Where illicit felling of trees has been done to meet the bonafide domestic requirements and the offences is petty in nature.

Note: The expression 'petty offences' in relation to illicit felling shall mean the offence where the amount involved is less than rupees two lakh. For determing that the offence is for bonafide domestic use, it must be established during investigation that timber has actually been used for domestic purpose only.

- b) No case of petty forest offences involving illicit felling shall be compounded until an enquiry and investigation is held by an officer not below the rank of Forest Ranger.
- c) Weak cases lacking in evidence and subsequently rendered un-fit for challan shall be compounded after examination by Divisional Forest Officer on advice of concerned District Attorney. Where there is difference of opinion between the Divisional Forest Officer and District Attorney, the Conservator of Forests thereon shall be final.
- (2) All forest offence cases relating to illicit lopping against the regulatory provisions/rules by right holders either for the purpose of fodder or fuel shall be compounded and taken to courts only if the accused refuses to compound the same.
- 3) Cases relating to illicit grazing shall be compounded and be taken to courts only if the offender refuses to compound.

- 4) No case of violation of provisions of H.P. Land Preservation Act, 1978 shall be compounded except, where no element of trade is involved and unauthorized felling of trees from private land is for bonafide domestic use and involves not more five trees than the limit specified under the Act ibid.
- 5) In all cases to be compounded under Indian Forest Act, 1927, in addition to the acceptance of compensation as per provision of the said Act, the case property shall not be released after charging value thereof at the market rate.
- 6) I case to be compounded under Himachal Pradesh Land Preservation Act, 1978 only compensation for the forest offence shall be charged and no value for rel..... of property be charged.
- 7) In the under mentioned cases double rates shall be charged both for compensation and release of property.
- (i) Where offence is committee before sun rise or after sun set;
- (ii) Where offence is committee in reserve forest.
- (iii) Where resistance is offered at the time of detection of offence;
- (iv) Where compounding of offence is done with the permission of the court where matter is pending for adjudication;
- (iii) Unauthorized uprooting of stumps of all species; and
- (iv) Offence committee in plantation or regeneration area.
- 8) Forest offences relating to unavoidable damages caused by the companies or Corporate Bodies shall be compound after ascertaining by an officer not below the rank of Divisional Forest Officer, that the damage is unavoidable.
- 9) Forest offence relating to avoidable damages up to Rs. 2lacs caused by the Companies or Corporate Bodies shall be compounded after realizing value of the forest produce and compensation at the double rates.

Explanation :-1. 'Avoidable damage' means the damage which can be avoided by taking reasonable humanly or mechanical precaution.

2. 'Unavoidable damage' means the damage which cannot be avoided even by taking reasonable humanly or mechanical precaution.

- 3. Cases to be taken to Courts by the Forest Department:- The following cases shall be taken to courts by department and defended through District Attorney:-
- (i) Cases not liable to be compounded as detailed at para 1 of this notification;
- (ii) Where offender refuses to compound the offence;
- (iii) Where the value of produce involved is between rupees two lacs and rupees ten lacs; and
- (iv) Cases of avoidable damages caused by the Companies/Corporate Bodies involving amount more than Rs.2 lacs and upto Rs.10 lacs.
- **4.** Cases to be registered with Police:- The following types of cases shall be registered with the police by the department, namely:-
- (i) Forest offence cases where the value of produce is more than rupees ten lacs;
- (ii) Cases relating to area where Indian Forest Act, 1927 and rules framed thereunder are not applicable or there are no special rules under which prosecution is possible.
- (iii) where Divisional Forest Officer concerned considers that police rather than Forest Department may deal with the matter to have deterrent effect. In all these cases, previous sanction of Conservator of Forests shall be obtained.
- (iv) When encroachment is detected on forest land, action for removal of such encroachment shall be initiated under the Himachal Pradesh Public Premises and Land (Eviction and Rent Recovery) Act, 1971 and also action for committing forest offence by the encroacher shall be initiated under the Indian Forest Act, 1927. FIR under various provisions of Indian Penal Code shall be registered with Police case:-
- (i) boundary pillars have been tampered with;
- (ii) permanent structure has been made;
- (iii) area encroachment is more than 10 bighas;
- (iv) offence of encroachment is committed repeatedly;

- (v) there is the encroachment within the protected area network (PAN) i.e. in a Wildlife Sanctuary of National Park.
- (vi) The cases involving avoidable damages exceeding rupees 10 lacs caused by the Companies or Corporate Bodies.

5. The powers for fixing of rates of compensation, value of forest produce, implements and review of damage reports shall be as under:-

- (i) The rates of compensation of forest offence including illegal/illicit muck dumping shall be fixed by the concerned Conservator of Forests of the Circle.
- (ii) The value of forest produce will be determined at the market value as fixed by the Principal Chief Conservator of Forests every year. The value of minor forest produce shall be market value prevalent at that time to be fixed by the Conservator of Forests.
- (iii) The rates of implements involved in the offence and to be released on compounding of the offence shall be fixed by Conservator Forests of the circle.
- (iv) All the damage reports shall be dealt with and reviewed at the range level basis and report in this respect shall be sent to the Divisional Forest Officer.

By Order

Additional Chief Secretary (Forests) to the

Government of Himachal Pradesh

Endst. No. As above Dated: 05-05-2010

Copy forwarded for information and necessary action to:-

- 1. All Administrative Secretary to the Govt. of Shimla-2.
- 2. The Private Secretary to the Hon'ble Forest Minister for kind information of the Hon'ble Minister.
- 3. The Principal Chief Conservator of Forests, H.P., Shimla-1.

- 4. The Chief Wild Life Warden, H.P. Shimla-1 with 20 spare copies.
- 5. The Director General of Police (Vigilance & Enforcement), H.P., Shimla-2
- 6. All Addl. Principal Chief Conservator of Forests/ Chief Conservator of Forests/ Conservator of Forests/ Divisional Forest officer in Himachal Pradesh.
- 7. The Director Prosecution Himachal Pradesh, Shimla-9.
- 8. All Deputy Commissioners in Himachal Pradesh.
- 9. All DIGs/SPs in Himachal Pradesh.
- 10. All Heads of Department in Himachal Pradesh.
- 11. All District Attorneys in Himachal Pradesh.
- 12. The Controller, H.P. Printing & Stationery Department, Shima-5 for publication in Rajputra.
- 13. The Under Secretary (Finance) to the Govt. of H.P., Shimla-2.
- 14. The DLR-cum-Secretary (Law) to the Govt. of H.P., Shimla-2.
- 15. Guard File.

Deputy Secretary (Forests) to the

Government of Himachal Pradesh.

Appendix-XXIX

Contents of guidelines in respect of prevention and control of Forest Fires as laid down by Govt. of India vide No. 9-6/99-FFD dated 22-6-2001.

(A) General Measures

- (1) All the fire prone forest areas should be prepared. This may be done by 31st July, 2000 and intimated to this ministry. It may please be noted, that grants to the State will be released based on the fire prone maps submitted by the states.
- (2) Data base on forest fires should be complied and analysis of statistics on fire damage should be done every year and reported to this ministry.
- (3) Fire Danger Rating System and Forest Fire Forecasting System should be prepared with the help of 'National Center for Medium Range Weather Forecasting' of Department of science and Technology, Lodi Road, New Delhi.
- (4) The services of ex-servicemen could be utilized and they can be appointed as Fire Warden in Divisions/Ranges on payment of honorarium.
- (5) The Item of forest protection should be treated as a plan item so that it gets more attention and more allocation of budget.
- (6) Forest Department field staff must make a realistic assessment of damage from forest fires and a professional approach should determine the assessment of damage. It is generally observed that field staff do not report the actual fire damage due to fear of action and this practice needs to be curbed.

(B) Specific measure

Following specific measures may be undertaken for prevention and control of forest fires.

(1) All the preventive measure should be taken in advance before the fire season starts. Fire lines should be cleared in time. Fire watcher should be employed and other precautionary measures as per Working Plan should be taken.

- (2) A senior officer in PCCF office may be appointed as nodal officer. During fire season he will keep upto date information on forest fires of the state and will liase with various agencies including Government of India regarding various issues on the subject.
- (3) During the fire season, a crises group of about five officers may also be constituted in the office of PCCF and territorial CCF/CFs to closely monitor the situation and coordinate various preventive measures and also arrange adequate enforcement in case of any eventually. The crisis group should also be constituted at the circle level. At Division level a group under the Collector's chairmanship with DFO as Secretary with prominent local, Social and political leaders and other officers of different departments be constituted for effective coordination and control. This crisis group would mobilize all the Government and non-Government officials and other material resources for prevention and control of forest fires.
- (4) Communication network should also be set up for quick flow of information and movement of the men and material to fire site.
- (5) The forest staff available in other wings should be specifically placed under the disposal of territorial division during fire season.
- (6) The concerned authorities of other departments may be apprised in advance and their cooperation may be sought in dealing with any eventuality.
- (7) Special steps should be taken to prevent fires in timber depots. Fire extinguishers and water should be kept ready for use in case of any eventuality.
- (8) JFM committees and Forest Protection Committees should be actively involved in Prevention and control of forest fires. Others people living in and around the forest areas and getting benefits from the forests should also be actively involved.
- (9) The communities and government staff should be regularly trained for prevention and control of forest fires.

(10) Efforts should be made to create public awareness against the ill effects of forest fires. A fire week could e celebrated to create mass awareness.

(C) Legal Measures

Provision of Indian Forest Act, 1927 regarding Forest fires i.e. Section 33 and 79 of IFA, 1927 should be strictly implemented. A specific circular may be issued by the State Governments regarding mobilization of human and material resources like man power, vehicles etc. in case of forest fires. Other rules and regulations of the state governments in this regard should also be strictly implemented. In order to make an impact at field level, the guidelines may be translated in local languages and circulated to the field staff.

Sd/-(M. K. Sharma) Addl. Inspector General of Forests

Appendix No.- XXX

NOTIFICATION

No. FFE-A(C)7-1/96-11

Dated:Shimla-2, the 7-11-99

In the exercise of the power conferred by clause (h) of Section 32 of the Indian Forest Act, 1927 (Act No. XVI of 1927), the Governor, Himachal Pradesh is pleased to make the following rules, namely:-

1. Short title, commencement and application

- (1) These rules may be called the Himachal Pradesh Forests (Protection from Fire) Rules, 1999.
- (2) These rules shall come into force from the date of publication in the Rajpatra, Himachal Pradesh.
- (3) These rules shall be applicable through out the yea except for the period from 1st of July to 13th of September.

2. Definitions

- (1) In these rules, unless there is anything repugnant in subject or context,
- (a) "Act" means the Indian Forest Act, 1927 (XVI of 1927);
- (b) "Divisional Forest Officer" means,
- (i) Divisional Forest Officer of a Forest Division.
- (ii) Divisional Manager of the Himachal Pradesh State Forest Corporation Ltd., and
- (iii) Collector (in whose jurisdiction forest lies);
- (c) "Forest" means a reserved Forest or protected-forest, duly notified as such under the Act;
- (d) "Section" means section of act; and
- (e) "Schedule" means Schedule appended to these Rules.
- (viii) The words and expressions used, but not defined in these rules, shall have the meanings assigned to them in the Act.

(2) Prohibition of kindling of fire:-

- (1) Kindling of fire within one hundred meters from a forest without permissions of the Divisional Forest Officer, or his authorized representative shall e prohibited.
- (2) Any person lighting a fire even beyond one hundred meter from the boundary of a forest shall take precautions, by clearing a fire path, not less than 10 meters in width between such place and such boundary, of by employing watchers or otherwise, to prevent the fire from spreading.
- (3) Precautions to be taken in burning agriculture residue bushes or "ghasnies", near forest. No person shall ignite agriculture residue or set fire to "ghasnies", or clear by fire any land, within a distance of one hundred meter from the boundary of the forest, unless;
- (a) He gives notice of his intention to burn or clear the land by fire, at least one week before doing so, to the nearest Forest Range Officer under whose jurisdiction such land lies; and
- (b) There is between such boundary and the spot on which such material are ignited, a space at least ten meters in width which is clear of all vegetation capable of carrying fire from such spot to the forest.
- (4) Restrictions on collection and stacking of inflammable forest produce of inflammable material outside the boundary of or in the forest. Any person collecting such inflammable material, that is to say, forest produce such as grass, dried leaves and pine needles, firewood timber, bamboo and resin, on a land adjoining a forest, or a holder of a pass pr permit issued by Forest Officer, or a person exercising his privilege or right to collect such forest produce from a forest, shall stack it at, as the case may be, in an open space in the forest as the Divisional Forest Officers may, by general of special order, specify, and shall isolate such stacks in such manner that, if it catches fire, the fire shall not spread to the surrounding area to endanger the forests.

(3) Precautions to be taken at camping places

- (1) No person shall camp in a forest, except in a camping place specially cleared and set apart and duly notified for the said purpose by the Divisional Forest Officers.
- (2) A person camping at such camping place may light fire for the purpose of cooking or for any other purpose in such a manner as not to endanger the forest or any building, shed and property at the camping place.
- (x) A person camping at the camping at the camping place shall, before vacating it, collect in the center of the camping place all inflammable material, which is to be left behind, and shall carefully extinguished all fires at the site.

By order Commissioner-cum-Secretary (Forests) to the Government of Himachal Pradesh,

Appendix No- XXXI

Authoritative English text of this Department Notification No. 1-21/71-L.S.G. Dated 8-6-94 as required under clause (3) of Article 348 of Constitution of India.

Government of Himachal Pradesh Local Self Govt. Deptt.

NOTIFICATION

No. 1-21-LSG

Dated, Shimla-2, the 8th June 1994.

In exercise of the powers conferred by clause (a) of Section 2 of the H.P. Public Premises & Land (Eviction & Rent Recovery) Act, 1971 (Act No. 22 of 1971), the Governor, Himachal Pradesh is pleased to empower all the Divisional Forest Officers of the department to perform the functions of the Collector within their jurisdiction under the aforesaid Act in so far as the encroachments as well as unauthorized occupation of Forest Land is concern with immediate effect.

By order

S.K. Sood

Commissioner-cum-Secretary LSG) to the Govt. of Himachal Pradesh.

No. 1-21/71-L.S.G.

Dated Shimla-2 the 8-6-94

Copy forwarded to:

- 1. All the Secretaries/Joint Secretaries/Deputy Secretaries/Under Secretaries to the Govt. of Himachal Pradesh.
- 2. All the Heads of Department in Himachal Pradesh.
- 3. The Controller, Printing & Stationers, H.P. Press Shimla-5 for publication in the H.P. Rajpatra (Extraordinary). It is requested that ten copies of the Rajpatra in which the above supplied to this Department.
- 4. A.L.D. Law Department in Himachal Pradesh Sectt. Shimla-2.
- 5. Record file.

Under Secretary (LSG) to the

Govt. of India Himachal Pradesh.

Appendix No.- XXXII

(Authoritative English text of Government Notification No. UD-A(3)8/2007/-II dated.....9-11-2012 as required under clause (3) of Article 348 of the Constitution of India)

GOVERNMENT OF HIMACHAL PRADESH DEPARTMENT OF URBAN DEVELOPMENT

No. UD-A(3)8/2007-II

Dated:Shimla-2, the

9-11-2012

NOTIFICATION

In continuation of this Department's Notification No. 1-21/71-LSG dated 8.6.1994 and in exercise of the powers conferred by clause (a) of Section 2 of the H.P. Public Premises & Land (Eviction & Rent Recovery) Act, 1971 (Act No. 22 of 1971), the Governor of Himachal Pradesh is further pleased to also appoint the Assistant Conservators of Forests (ACFs) to perform the function of the Collector within their respective jurisdiction of Forest Division of Circle in Kullu, Mandi, Dharmshala, Rampur, Shimla and Nahan under the aforesaid Act for the period upto 31-3-2014 in so far as the encroachments as well as unauthorized occupation of Forest Land is concerned with immediate effect.

By Order

Principal Secretary (UD) to the Government of Himachal Pradesh

Endst. No. as above, dated: Shimla-2, the

9-11-2012

Copy forwarded for information and necessary action to:-

- 1. The pr. Secretary (Forests) to the Govt. of Himachal Pradesh shimla-2.
- 2. The Principal Chief Conservator of Forest/Wildlife, H.P. Shimla-1
- 3. All Addl. CCFs/CFs in H.P.
- 4. The M.D., HPSFDC Ltd.SDA Complex, Kasumpti, Shimla-
- 5. The DFO Encroachment, Rampur/Shimla/Kullu.

- 6. The Assistant Conservators of Forests (ACFs) Forest Division of Circle in Kullu, Mandi, Dharmshala, Rampur, Shimla and Nahan.
- 7. A.L.D.-cum-Under Secretary (Law) to the Govt. of H.P.
- 8. Guard life.

S/d

Deputy Secretary (U.D.) to the Government of Himachal Pradesh

Appendix No.- XXXIII

(Authoritative English Text of this department Notification number Udyog-II (F)6-20/2005 dated 30.4.2011 as required under clause (3) of article 348 of the Constitution of India).

Government of Himachal Pradesh Department of Industries

No. Ind-II (F) 6-20/2005

Dated Shimla-2, the 30/04/2011

NOTIFICATION

In exercise of the power conferred under Sub-Section (2) of Section 26 read with Section 21(4) of the Mines and Minerals (Development & Regulation) Act, 1957 (Act No. 67 of 1957) and all other powers enabling him in this behalf, the Governor, Himachal Pradesh, is pleased to empower/ authorize the following officers to seize any mineral raised or transported or caused to be raised or transported by any person without any lawful authority, any mineral from any land and for that purpose uses any tool, equipment, vehicle or any other thing for this purpose with immediate effect:-

1.	All the Deputy Commissioners in HP	In their respective jurisdiction.
2.	All the Additional Deputy Commissioners in HP	-do-
3.	All the Sub-Divisional Magistrate in HP	-do-
4.	All the Executive Magistrates in HP	-do-
5.	All the Superintendents of Police in HP	-do-
6.	All the Additional Superintendents of Police in HP	-do-
7.	All the Deputy Superintendents of Police in HP	-do-
8.	All the Station House Officers of the Local	
Polic	ee Stations in HP	-do-

9.	All the S.I/ASIs (Police Post Incharge) in HP	-do-
10	All the Conservator of Forests in HP	-do-
11	All the Divisional Forest Officers in HP	-do-
12	All the Assistant Conservator of Forests in HP	-do-
13	All the Range Officers of Forests in HP	-do-
14	All the Executive Engineer, HP PWD in HP	-do-
15	All the Assistant Engineer, HP PWD in HP	-do-
16	All the Executive Engineer, I & PH in HP	-do-

Under Secretary (Industries) to the Government of Himachal Pradesh

Appendix No.- XXXIV

(Authoritative English text of this department notification number Ind-II(F) 6-2/96- dated 17-3-2008 as required under clause (3) of article 348 of the Constitution of India).

Government of Himachal Pradesh Department of Industries

No.In-II(F)6-2/96-II

Dated Shimla-2, the 17-3-2008

NOTIFICATION

In exercise of the conferred by Section 22 of the Mines and Minerals (Development & Regulation) Act, 1957 (Act No. 67 of 1957), Himachal Pradesh, is pleased to authorize the following officers/officials to make complaints in writing in the Court of competent Jurisdiction in respect of any offence punishable under said Act or any ruled made thereunder with immediate effect:-

i. All the Superintendents of Police in H.P.

In their respective Jurisdiction

ii. All the Station House Officers of the Local

iii. Police Station in HP.

-do-

iv. All the Junior Engineers, HP PWD in HP

-do-

v. All the Junior Engineers, I & PH in HP

-do-

vi. All the Forest Guards in HP

-do-

By order

Principal Secretary (Industries) to the Government of Himachal Pradesh.

Endst. No. Ind-II (F)6-2/96-II

Dated Shimla-2, the 17-3-2008

Copy for information and further necessary action is forwarded to:-

- 1. All the Administrative Secretaries to the Government of Himachal Pradesh.
- 2. The Director of Industries, Himachal Pradesh, Shimla-1 with reference to his letter No. Udyog- Bhu (Khani-4) Laghu-707/05-8064 dated 20.9.2007 with additional 20 spare copies.
- 3. All the Head of Departments in Himachal Pradesh.
- 4. All the Deputy Commissioners in Himachal Pradesh.
- 5. All the Superintendents of Police in Himachal Pradesh.
- 6. All the Block Development Officers in Himachal Pradesh.
- 7. All Divisional Forests Officers in Himachal Pradesh.
- 8. All Sub-Divisional Officers, PWD in Himachal Pradesh.
- 9. All Sub-Divisional Officers, I & PH in Himachal Pradesh.
- 10. The State Geologist, Himachal Pradesh, Shimla-1.

By order

Principal Secretary (Industries) to the Government of Himachal Pradesh.

Appendix-XXXV

(Authoritative English Text of this Department Notification No. Udyog-II(B)1-3/97 dated 30.7.04 as required under Article 348(3) of the Constitution of India).

Government of Himachal Pradesh Department of Industries

No. Ind-II (B)1-3/97

Dated Shimla-2, the 30/7/04

NOTIFICATION

In continuation of this Department Notification Nos. 10-13 /71-51 and Udyog(Chh) 7-3/90 dated 13-3-1974 and 11-3-1993 respectively and exercise of the powers conferred under sub-section(2) of section 26 of the Mines and Minerals (Department & Regulation) Act, 1957 (67 of 1957) read with Section 22 of the Act ibid, the Governor, Himachal Pradesh, is pleased to authorize following officers of the Sub-Divisional Flying Squad provided in River/Stream Bed Mining Policy Guidelines for the State of Himachal Pradesh. 2004 to make complaints in Courts in writing in respect of any offence punishable under the said Act or any rules made thereunder in their respective jurisdiction:-

- . Asstt. Conservator of Forest.
- 2. Deputy Superintendent of police.

By order

Addl. Chief Secy.(Inds.) to the Government of Himachal Pradesh

No.Ind (B)1-3-97

Dated Shimla-2, the 30-07-2004

Copy forwarded for information and necessary action to:-

- 1. All Administrative Secretaries to the Government of Himachal Pradesh.
- 2. All Heads of Department in Himachal Pradesh.
- 3. All Deputy Commissioners in Himachal Pradesh.
- 4. All Deputy Superintends of Police in Himachal Pradesh.
- 5. All Divisional Forests Officers in Himachal Pradesh.

- 6. All Sub-Divisional Magistrate in Himachal Pradesh.
- 7. The Director of Industries, Himachal Pradesh with 25 extra copies.
- 8. The State Geologist, Himachal Pradesh, Shimla-1.
- 9. All Mining Officers in Himachal Pradesh.
- 10. All General Managers, District Industries in H.P.
- 11. The Deputy Controller, Printing & Stationery, H.P., Shimla-3 for publication in Rajpatra (Extra ordinary).

Under Secretary (Industries) to the Government of Himachal Pradesh

Appendix No- XXXVI

(Authoritative English Text of this department Notification number Udyog-II (F)6-20/2005 dated 30.4.2011 as required under clause (3) of article 348 of the Constitution of India).

Government of Himachal Pradesh Department of Industries

No. Ind-II(F) 6-2/96

Dated Shimla-2, the 30/04/2011

NOTIFICATION

In exercise of the power conferred under Sub-Section (2) of Section 26 read with Section 22 of the Mines and Minerals (Development and Regulation) Act, 1957 (Act No. 67 of 1957) and all other powers enabling him in this behalf, the Governor, Himachal Pradesh, is pleased to authorize the following Officers/Officials to make complains in writing in the Court of competent jurisdiction in respect of any offence punishable under the said Act or any rules made there under, with immediate effect:-

1.	The Director of Industries	throughout Himachal Pradesh.
2.	All the Deputy Commissioners in HP	In their respective jurisdiction.
3.	All the Superintendent of Police in HP	-do-
4.	The Additional Director of Industries	throughout Himachal Pradesh.
5.	The Joint Directors of Industries	-do-
6.	The Deputy Directors of Industries	-do-
7.	The State Geologist	-do-
8.	All the Geologists	-do-
9.	All the Assistant Geologists	-do-

10.	All the Technical Assistant (Geologists)	-do-
11.	All the General Managers, DIC in HP	In their respect jurisdiction.
12.	All the Mining Officers in HP	-do-
13.	All the Mining Inspectors in HP	-do-
14.	All the Assistant Mining Inspectors in HP	-do-
15.	All the Managers, Industries in HP	-do-
16.	All the Industrial Promotion Officers in HP	-do-
17.	All the Economic Investor, Industries in HP	-do-
18.	All the Extension Officers, Industries in HP	-do-
19.	All the Additional Deputy Commissioners in HP	-do-
20.	All the Sub-Divisional Magistrate in HP	-do-
21.	All the Tehsildars in HP	-do-
22.	All the Additional Superintendents of Police in HP	-do-
23.	All the Deputy Superintendents of Police in HP	-do-
24.	All the Station House Officers of the Local Police	
statio	on in HP	-do-
25.	All the S.Is/A.S.Is (Police Post Incharge) in HP	-do-
26.	All the Divisional Forest Officers in HP	-do-
27.	All the Conservator Forests in HP	-do-
28.	All the Assistant Conservator Forests in HP	-do-
29.	All the Range Officers of Forests in HP	-do-
30.	All the Block Officers of Forests in HP	-do-

31.	All the Forest Guards in HP	-do-
32.	All the Executive Engineer, HP PWD in HP	-do-
33.	All the Assistant Engineer, HP PWD in HP	-do-
34.	All the Junior Engineer, HP PWD in HP	-do-
35.	All the Executive Engineer, I & PH in HP	-do-
36.	All the Assistant Engineer, I & PH in HP	-do-
37.	All the Junior Engineer, I & PH in HP	-do-
38.	All the Block Development Officers in HP	-do-
39.	All the Junior Engineers, Development Block in HP	-do-
	This supersedes of all previous Notifications issued in this behalf.	

By order Addl. Chief Secretary (Industries) to the Government of Himachal Pradesh.

Appendix No.- XXXVII

(Authoritative English text of this Department Notification No. FTs-II(B) 15-10/87 Dated 23-8-2001 as required under clause (3) of article of the Constitution of India)

NOTIFICATION

No. Fts. II(B) 15-10/87 Dated

In exercise of the powers conferred by section 80 read with section 81 of the Indian Forest Act, 1927 (Act No. XVI of 927), the Governor, Himachal Pradesh is pleased to make the following Regulations, namely:-

- 1. Short title, application and commencement:-
- (1) These Regulations may be called the Himachal Pradesh Participatory Forest Management Regulations, 2001
- (2) They shall apply to such Government forest and such Government land including the common land, which shall be selected jointly for participatory forest management by the Society and the Department.
- (3) They shall come into force from the date of publication in Rajpatra, Himachal Pradesh.
- **2. Definitions:-** In these Regulations, unless there is anything repugnant in the subject or context.
- (a) "Act" means the Indian Forest Act, 1927 (Act No.16 of 1927) as amended in its application to Himachal Pradesh;
- (b) "Conflict Resolution Group" means a group consisting of a representative of the concerned Gram Panchayat, a representative of the local non-Government organizations or local community based organizations and the concerned Assistant Conservator of Forests.
- (c) "Common Land", Family", "Gram Panchayat", 'Panch", "Pradhan", "Village" and Ward" shall have the meanings respectively assigned to them in the Himachal Pradesh Panchayat Raj Act, 1984(Act No.4 of 1994);
- (d) "Department" means the Himachal Pradesh Forest Department.

- (e) "Divisional Forest Officer" means the forest officer in-charge of a territorial of wildlife forest division of the Department.
- (f) "Executive Committee" means executive body of the Society;
- (g) "Forest Officer" means a Forest Officer as defined under Sub-section (2) of section 2 of the Act;
- (h) "General House" means General House of the Society;
- (i) "Government" means Government of Himachal Pradesh;
- (j) "Grazier group" means a group of persons, whether resident members or migratory graziers, who are dependent on the grazing resource in the selected area for meeting their livelihood needs;
- (k) "Micro-plan" means a holistic forest management development plan of the area selected for participatory management;
- (l) "Participatory forest management" means management of Government forest and Government land including common land managed jointly by the Society and by the Department;
- (m) "Selected area" means any Government forest and Government land including common lad selected under regulation 3 of these Regulations;
- (n) "Self help group" means any organized group of person, who collectively by mutual help are able to enhance their economic status through resource based activities;
- o) "Self help group" means a sub component of the micro-plan, which is a technically appropriate plan for the site;
- (p) "Society" means village forest development society registered under section 3 of the Societies Registration Act, 1860 (Act No. 21 of 1860) for participatory forest management;
- (q) "Sustainable forest management" means management which is economically viable, environmentally benign and socially beneficial, and which balances present and future needs; and
- (r) "User group" means a group of persons dependent upon a common natural resource for sustaining its livelihood needs.

3. Intent of participatory forest management;-

- (1) On an application made to the Divisional Forest Officer signed by at least 50 percent of the voters of a Gram Panchayat Ward, any Government forest and Government land including common land may be brought under participatory forest management. The land so identified shall be known as selected area.
- (2) In accordance with the wider objectives and plans of Government for sustainable forest management, the selected area shall be managed jointly by the Society and the Department on the terms and conditions of an agreement to be entered between the Society and the Department.

4. Village forest development society:-

- (1) There shall be a Society for a Gram Panchayat Ward However, where the Ward is not compact and the hamlets within it do not have common forests, common grazing lands, common rights and concessions, more than one Society may be formed for each cluster of hamlets. The Society shall be registered under section 3 of the Societies' Registration Act, 1860. (Act No.21 of 1860).
- (2) All voters of a Gram Panchayat Ward shall be entitled to be enrolled as members of the Society.

5. Constitution of Executive Committee of the Society:-

The Executive Committee shall consist of -

- (a) President to be elected by the General House;
- (b) Vice President -do-
- (c) Four Members -do-
- (d) Treasurer to be nominated by the elected members from amongst the members of the Society;
- (e) Joint Secretary (Woman) -do-
- (f) Ward Panch ex-officio member;

(g) President – Mahila Mandal

-do-

-do-

(h) Representative – Local women group

Three Members to be co-opted from the village level

Committees constituted by other

(j) Member – Secretary to be elected by the General House.

Provided that at least 7 members of the Executive Committee shall be from amongst that women. Joint Secretary shall assist the Member Secretary.

- **6.** Them of office of members of the Executive Committee:- Elected members of the Executive Committee shall hold office for a period of two years from the date of assumption of office.
- **7. Powers of the Executive Committee:-** The Executive Committee shall exercise the powers of a "Forest Officers" as assigned by the Government under the Act.
- **8. Usufruct sharing:-** The Society shall be entitled to the following benefits, namely:-
- (a) to collect the yield such as fallen twigs, branches, lopping, grass, fruits, flowers, seeds, leaf fodder and non timber forest products free of cost;
- (b) to the sale proceeds of all intermediate harvest, subject to protection of forest and plantations for at least 3 years from the date of agreement;
- (c) to organize and promote vocational activities related to forest produce and land; and other activities such as promotion of self help groups which may provide direct benefits, including micro lending to women. None of the activities so promoted shall affect the legal status of the forest land;
- (d) recorded rights over the forest shall not be affected by these benefits;

- (e) the Government shall forest charge no royalty on the forest produce within the selected area;
- (f) after 5 years, the Society may expand the areas, on the basis of a fresh agreement deed, by inclusion of adjoining or nearby areas;
- (g) after 20 years from the date of agreement and, based on the principles of sustained forest management, 75 percent of the net sale proceeds from selected area shall be put into the account of Society and the remaining 25 percent of the sale proceeds shall go to the concerned Gram Panchayat; and
- (h) to utilize at least 40 percent of the net sale proceeds on forest regeneration activities including soil and water conservation. Provided that for the purpose of usufruct sharing, family shall be one unit.
- **9. Funds:-** Funds shall be generated by the Society through contributions by members and sale of usufructs under these regulations. All founds, including those received from the Government, Gram Panchayats and non-government sources, shall be utilized through the micro-planning process.
- **10. Maintenance of accounts:-** The sum received by the Society shall be deposited in the name of the concerned Society in a nationalized bank or scheduled bank or co-operative bank or post office and the account shall be operated under the signatures of the President, Treasurer and Member Secretary of the Society.
- 11. Grant-In-Aid: The department shall release Grant-In-Aid to the Society under the Grant-In-Aid Rules subject to the availability of funds and satisfactory performance of functions by the Society.
- 12. Settlement of dispute:- In case of any dispute in relation to usufructs sharing in the Society, the Deputy Ranger concerned of the Department, shall take steps to reconcile the dispute. In case the dispute is not resolved, the Deputy Ranger shall refer the dispute, along with his report to the Ranger Officer concerned of the Department. The Range Officer, after hearing the parties, shall resolve the dispute within 30 days from the date of receipt of report of the Deputy Ranger.
- 13. Appeal:- An appeal shall lie from the decision of the Ranger Office to the Conflict Resolution Group to be filed within 30 days from the date of decision, who shall decide the same within 60 days from the date of filling of appeal, after affording

an opportunity of being heard to the parties. The decision of the Conflict Resolution Group shall be final and binding on the parties. The conflict Resolution Group shall send a copy of the decision to the Society and the Divisional Forest Officer concerned free of cost.

14. Preparation of micro-plans:-

- (1) A micro-plan shall be prepared for the listed forest management and development of the selected area, by the Society. The Development shall help the Society in preparation of the micro-plan. A micro-plan shall be operative for a period of five years from the date of its approval by the Divisional Forest Officer and may be revised after three years. The micro-plan shall be passed in the general house with at least 60 percent majority of the members present.
- (2) The Divisional Forest Officer may approve whole or part of the micro-plan.

15. Powers of the Government:-

Notwithstanding anything contained in these regulations, the Government shall have the powers to issued directions to the Society on participatory forest management processes, micro planning, co-ordination, monitoring Grant-in-Aid and implementation mechanisms.

By order FC-cum-Secretary (Forests) to the Government of Himachal Pradesh

Endst. No. As above

Dated Shimla-2, the 23-8-2000

Copy is forwarded to the following for favour of information and necessary action:-

- 1. The Secretary, Government of India, Ministry of Environment & Forests, Paryavaran Bhawan, CGO Complex, Lodhi Road, New Delhi-3.
- 2. The FC-cum Secretary (Finance Reg.) to the Government of Himachal Pradesh, Shimla-2, with 3 spare copies.
- 3. The Pr. Chief Conservator of Forests, H.P. Shimla-1 with 20 spare copies.
- 4. The Addl. PCCF, H.P. Shimla-1.
- 5. The Accountant General (Audit), H.P. Shimla-3 with 5 spare copies.

- 6. All CCFs in Himachal Pradesh.
- 7. The Conservator of Forests, Planning, H.P. Shimla-1.
- 8. The Controller (P & S), H.P. Govt. Press, Shimla-5, for publication in the Rajpatra.
- 9. The Asst. Controller (F & A), O/O PCCF, H.P. Shimla-1
- 10. Guard File.

-Sd-

Addl . Secretary (Forests) to the Government of Himachal Pradesh

APPENDIX No- XXXVIII

GOVERNMENT OF HIMACHAL PRADESH DEPARTMENT OF FOREST

No. FTS-(F)6-7/82 LOOSE DATED SHIMLA-2/9-4-1996

NOTIFICATION

Regarding compensation on account of losses caused to animal, human being by wild animals.

In supersession of all previous notifications regarding compensation for the losses being done to animals and human being by WILD Animals, the Governor Himachal Pradesh is pleased to declare the categories of losses being done by wild animals as defined in Wild Life Protection Act, 1972 and the amount of compensation to a person who on application claim relief for himself or the members of his family or dependents or his own cattle as under:-

1.	In case of death of human beings	Rs. 25,000/-
2.	In a case of killing of horses/mule (all breeds)	Rs. 4,000/-
	by snow leopard in shed.	
3.	In a case of killing of horses/mule (all breeds)	Rs. 2,500/-
	by snow leopard in jungle.	
4.	In case of permanent disability to human beings.	Rs.6,250/-
5.	In case of injury to human beings.	Rs. 1875/-
6.	Loss of buffalo, cow jersey cross ox and mule	Rs. 2,500/-
	(Adults) (Special breed) in cow shed.	
7.	Loss of buffalo, cow jersey cross ox and mule	Rs. 1,500/-
	(Adults) (Special breed) in jungle.	

8.	Loss of cow (local breed) in cow shed.	Rs. 625/-
9.	Loss of cow (local breed) in jungle.	Rs. 375/-
10.	Loss of Ox (local breed) in cow shed.	Rs. 1250/-
11.	Loss of Ox (local breed) in jungle.	Rs. 625/-
12.	Loss of young one of buffalo, cow (jersey),	Rs. 250/-
	Ox and mule (special breed) in shed.	
13.	Loss of young one of buffalo, cow (jersey),	Rs. 188/-
	Ox and mule (special breed) in jungle.	
14.	Loss of young one of buffalo, cow (jersey),	Rs. 125/-
	Ox and mule (local breed) in shed as well as in jungle.	
15.	Loss of sheep and goat in shed.	Rs. 375/-
16.	Loss of young ones of sheep and goats in shed.	Rs. 312.50/-
17.	Loss of sheep and goat in jungle.	Rs. 188/-
18.	Loss of young ones of sheep and goats in jungle.	Rs. 188/-
19.	Loss of yak, horse/mule and camel in shed.	Rs. 2500/-
20.	Loss of yak, horse/mule and camel in jungle.	Rs. 2500/-
21.	Loss of churu/churi in shed.	Rs. 1250/-
22.	Loss of churu/churi in jungle.	Rs. 625/-
23.	Loss of donkey in shed.	Rs. 675/-
24.	Loss of donkey in jungle.	Rs. 500/-
25.	Loss of pashmina goat in shed.	Rs. 625/-
26.	Loss of pashmina goat in jungle.	Rs. 375/-

27. Loss of young ones of yak horse camel churu/churi, Rs. 250/donkey pashmina goat in shed.

28. Loss of young ones of yak horse camel churu/churi, Rs. 125/donkey pashmina goat in jungle.

29. Loss of pigs in shed. Rs. 312.50/-

30. Loss of pigs in jungle. Rs. 168/-

- 2. The concerned officers of the department will release 25% of the amount of compensation prescribed for human losses as interim relief to the family of the deceased/incapacitated persons after due verification in anticipation of formal sanction without delay. The balance amount would be released after completing the formalities as prescribed in this department notification of even number dated 9-4-1996. They will submit case of reimbursement of the amount given on account of loss of life/incapacitation/grievous injuries to the Chief Conservator of Forests (Wild Life) who will get it reimbursed from the Government of India.
- 3. The expenditure on enhanced rates for loss of sheep and goat will be borne by the State Government. The grant of relief as referred to above will subject to the following conditions:-
- i) Production of postmortem report in case of loss of human life or injury/disability certificate from the Medical Officer of a Govt. Institution as the case may be.
- ii) The verification of loss that the same was actually caused by Wild Animals will be done by the Pradhan/UP Pradhan of Panchayat/Revenue Lambardar/President notified area Committee/Chairman Municipal Committee/Commissioner, Municipal Corporation of the area/ elected member of the Cantonment Board area and Range Officer/Deputy Ranger, Range Officer or any other forest officer higher in rank than a Range Officer in the Tribal areas and backward areas where the office of Range Officer/Deputy Range Officer/higher in the rank that Range Officer is more than 15 Kms. away from the residence of the applicant, in that case, by the Forest Guard of the area.

- iii) All Divisional Forest Officer in H.P. shall be the final authority to sanction cases of claim on account of losses done by the wild animals up to Rs. 2000/- in each case and all Conservator of Forests in H.P/Chief Wild Life Warden shall be the final authority to sanction such cases of relief beyond Rs. 2000/- in each case.
- iv) All cases of damage done by the wild animals should be reported by the applicant to the nearest Range Officer or any officer above of the Forest Department within five days of the event and claims for relief is filed within a month with Dy. Conservator of Forests/Divisional Forest Officer or any other higher officer of the Forest Department both territorial and Wild Life.
- v) The relief shall be granted in case of loss of cattle to the owner of the cattle.
- vi) The relief in case of loss of the human being shall be granted in the order of preference given below:-
- a) Wife or husband as the case may be.
- b) Sons unmarried or divorced daughters and children of predeceased son (Equal share).
- c) Daughters. (Equal share).
- d) Grand children being children or daughters who died before him (Equal share).
- e) Father or mother.
- f) Failing all above any other next of kin entitled to a share in their state.
- g) Brothers or sisters or children of the deceased brothers (Equal share).

By Order Commissioner cum-Secretary (Forests) to the Government of Himachal Pradesh.

APPENDIX No- XXXIX

Government of Himachal Pradesh Department of Forest

No.FTS-B(F)6-7/82-II

Dated 27-8-2001 NOTIFICATION

In partial modification of this department Notification of even number dated 9-4-1996 regarding compensation for the loss caused to animals and human being by the Wild Animals, the Governor, Himachal Pradesh is pleased to revise the rates of compensation in respect of serial number 1,4,5 and 17 and substitute the same as under with immediate effect

The case of death of human being
 In case of permanent incapacitation of human being
 In case grievous injuries to human beings
 Loss of sheep and goat in jungle
 Rs. 1,00,000/ Rs. 33,000/ Rs. 400/-

The concerned officers of the department will release 25% of the amount of compensation prescribed for human loss as interim relief to the family of the decease/incapacitated persons after due verification in anticipation of formal sanction without delay. The balance amount would be released after completing of formalities as prescribed in this department. Notification of even number dated 9-4-1996. They will submit case for reimbursement of the amount given on account of loss of life/permanent incapacitation/ grievous injuries to the Chief conservator of forests (Wildlife) who will get it reimbursed from the Government of India.

The expenditure on enhanced rates for loss of sheep and goat will be borne by the state government.

By Order F.C.- cum-Secretary (Forests) to the Government of Himachal Pradesh.

Appendix No.-XL

Copy of letter No. Fts (F)-13-38-84 dated 11.3.1986 from: Under Secretary (Forests) to the Govt. of Himachal Pradesh addressed to the Chief Conservator of forests, H.P.

Subject: Regarding Policy for the felling of Ban/Oak trees.

I am directed to refer to the correspondence arresting with your letter No. Ft. 26-17/77 (S) III dated the, 14th October, 1985 on the subject cited above and to say that it has been decided that the restrictions in the felling of Ban. Oak trees should continue and the govt. approval will have to obtain before felling takes place. You are, therefore, requested to please take further necessary action in the matter accordingly.

No. Ft. 26-17/77(S) dated Shimla-1, the 11th March, 1986.

- 1. Copy along with a copy of this office D.O. letter of Even No. dated 4.10.1985 forwarded to CFs/DFOs (T) for information and strict compliance. Please note that these instructions apply equally to felling of Ban trees from private lands.
- 2. Copy to Supdt. Misc. Section for information and similar necessary action.

SD/-

C.C.F (T), H.P.Shimla

APPENDIX No.-XLI

Authorities English text of the Govt. Notification No. Fts. (A)3-1/77 dated 17-8-93 as required under clause(3) of Article of the Constitution of India for the general information of the public.

Government of Himachal Pradesh Department of Forest Farming & Conservation.

No.Fts(A)3-1/77

Dated Shimla-2, 17th August, 1993

NOTIFICATION

In exercise of powers conferred under sections 41 and 42 of the Indian Forest Act, 1927 (16 of 1927), the President of India is pleased to make the following rules to Amend the Himachal Pradesh Forest Produce Transit (Land Routes) Rules, 1978 and published in the Rajpatra Himachal Pradesh (Extra-Ordinary) dated the 5th March, 1979, vide this Department Notification of even number dated 20.11.1978, namely:-

Short Title 1 These rules shall be called the Himachal Pradesh Forest Produce Transit (land Routes) Amendment, Rules, 1993.

Amendment 2 In rule 5 of the Himachal Pradesh Forest Produce Transit (land of rule-5 Routes) Rules, 1978 (herein after called the "said rules") after the

forest produce", but before the words "that does not bear", the words and signs "other than fuelwood,

words

"any

Khair wood, bamboos, charcoal, medicinal plants and seeds" shall be inserted.

Amendment 3 In rule 6 of the said rules, after the words "forest produce" but before of rule 6 the words by land routes, the words and sign "other than fuelwood, khair wood, bamboos, charcoal, medicinal plants and seeds" shall be inserted.

Amendment 4 In rule 10 of the said rules, for the words "timber or for such timber of rule 10 appearing after the words "any unmarked", but before the words "as bears" the words and signs "forest Produce other than fuelwood, Khair wood, bamboos, charcoal, medicinal plants and seeds" shall be substituted.

Amendment 5 In rule 11 of the said rules, for sub-rule (5), the following shall be of rule 11 substituted, namely:-

"(5). The issuing authority shall also determine the other conditions subject to which the pass shall be issued and shall also determine the period for which the pass shall remain valid. However, the validity of any pass shall under no circumstances exceed a period of six month including any extension (s) allowed. A fee of Rs.25/- shall be livable for the issue of such a pass except in case of medicinal plants for which the fee shall be as per Annexure: D:"

Amendment 6 For rule 18 of the said rules, the following shall be substituted, namely:of rule 18

"18. Ban on booking forest produce by rail, by post and by air:- No person shall offer any forest produce, for export by rail or any railway station or by post at post office or by air on any airport within Himachal Pradesh, unless a pass has been issued under these rules and no railway, Postal, Airport authority shall accept for transport/transmission, any forest produce by rail, post or air, unless it is accompanied by a valid pass".

Amendment 7 In rule 20 of the said rules, for the words "six months" appearing after of rule 20 the words "extends to", but before the words "or with" the words "two years" shall be substituted and for figure "500", words "five thousand" shall be substituted.

Amendment 8 After 'Annexure-'C' to the said rules, the following New

Annexure-'D' Annexure-'D' the following Annexure 'D' shall be inserted, namely:-

Annexure 'D'

(See rule 11(5)

S B C C C C C C C C C C C C C C C C C C				
. t c p o o o o o o o o o o o o o o o o o o	S	В	L	${f E}$
N n 1 r 0 i t t c n a p a a a p e r m e r n a f t t t t c f d e e t t	r	0	0	X
N n 1 r 0 i t t c n a p a a a p e r m e r n a f t t t t c f d e e t t		t	c	p
No i t		a	a	
o i c n n a p p e c r m e r m e e r m f t t e e f d d e e f d i n n n n n n n n n n n n n n n n n n	N		1	
. C		i		t
a		c	n	
				р
Part		i i		=
n a o i m f t e m F o e e f d c i c (e i i d n n i a n i a n i s n i p n i p n i p n i p n i r r j s p i r r j s p i r r j s p i s p i s p i s p i s p i s p i s p i s p i s p <td></td> <td>-</td> <td></td> <td>_</td>		-		_
a m f t t e m F e e e e e e e e e e e e e e e e e		n		
m f t e m F e e e e e e e e e e e e e e e e e				•
e			f e	1 4
M			1	ι
o e d e e i i i i i i i i i i i i i i i i		e		17
f d i i i i i i i i i i i i i i i i i i				
m				
m c i i i i i i i i i i i i i i i i i i		I	a ·	e
e i i d n n i a l c l R i s s n p . a l p n e p t r r l s g q q q			1	
d		m	c	(
i a R c i R i p n p a l l l a P r t p r l s q Q			i	i
C		d	n	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		i	a	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		c	l	R
a l l a P P P P P P P P P P P P P P P P		i		S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		n	p	•
$\begin{bmatrix} p & & & & & & & & & & & & \\ p & & & & &$		a	l	
$\begin{array}{ c c c c c c } \hline p & & t & r \\ l & s & & & \\ a & & & & Q \\ \hline \end{array}$		1	a	P
l s Q			n	e
l a Q		p	t	r
a Q		î	s	
		a		O
		n		

	f		;
	i a		1
	S		11
			t
			a
			1
)
1	2	3	4
1.	A	S	5
	n	a	0
	S	t	
	e	h	0
	1		0
	i	j	
	a	a	
		1	
	a	O	
	p	r	
	t	i	
	r		
	a		
2.	A	Р	7
	C	a	5
	0	t	0
	n	i	0
	i	· · · · · · · · · · · · · · · · · · ·	· ·
	1 1	b b	
	l n	11	0
	u m	A	U
	m	A	
		τ.	
	c	1	
	h	S	
	a	h	
	S		

			T
	m	(
	a	K	
	n	2	
		a	
	t	r	
	h	V	
	u	i	
	m		
	***	P	
		1	
		a	
		t	
		i	
		S	
		h	
)	
3.	P	K	5
	i	a	4
	С	r	0
	r	0	
	1	_	
	0	0	0
	r		0
	h		
	i		
	Z		
	a		
	K		
	u		
	r		
	*		
	I -		
	0		
	0		
	a		
4.	J	D	5
··	<u> </u>	<u> </u>	1

		1	٥
	u	h	0
	r	0	0
	i	0	
	e	p	0
	n	ı	0
	e		· ·
	· ·		
	a		
	m		
	a		
	С		
	r		
	0		
	0		
	C		
	e		
	p		
	h		
	a		
	1		
	e		
5	P	В	4
5.			4
	0	a	5
	d	n	0
	0	k	•
	р	a	0
	ĥ	k	0
	v	r	
	1	i	
	1	1	
	I		
	u		
	m		
	h		
		I	

	,		
	e		
	X		
	a		
	n		
	A A		
	u		
	r		
	u		
	m		
6.	A	C	1
	n	h	2
	g	0	5
	e.	r	
	1	a	
	1	a	0
	1		U
	C		
	a		
	g		
	1		
	a		
	11		
	c		
	C		
	a		
7.	V	В	2
	i	a	2
	0	n	5
	1	a	0
	a	f	
	"	S	0
		1	0
	0	n	U
	a	a	
	0		
	r		

	a		
	t t		
	a		
8.	V	M	5
0.	v a	u	9
	1	e e	0
	1 A	h	O
		11	
	1	a 1r	0
		K la	U
	a	b	
	n	a	
	a	1	
		a	
	W		
	a		
	1		
	1		
	i		
	c		
	h		
	i		
	i		
9.	R	R	1
	h	e	1
	e	W	0
	u	a	
	m	n	0
		d	0
	e	c	-
	m	h	
	0	i	
	ď	n	
	i	i	
	1	1	

10.	D	S	9
10.	;	h	0
	1	11 ;	0
	0	1	U
	S	n	
	c	б	0
	0	I	0
	r	i	
	e	-	
	a	m	
		i	
	d	n	
	e	g	
	1	ĺ	
	t	i	
	0	_	
	i		
	d		
	u		
	6		
11	a	M	2
11.	T	M	3
	h	a	3
	a	m	5
	1	i	•
	i	r	0
	c	i	0
	t		
	r		
	u		
	m		
			
12.	A	S	5
12.	r	e	0
	1 †		O
	ι	S	•

	T		
	e	k	0
	m	i	0
	i		
	S		
	i		
	a		
	u		
	1-		
	b		
	r		
	e		
	v		
	i		
	f		
	0		
	1		
	1 .		
	1		
	a		
13.	T	В	1
	h	a	0
	y	n	0
	m	į	
	u	a	0
	S	w	$\overset{\circ}{0}$
	3	VV	U
	_	a :	
	s	a i	
	s e	a i n	
		a i n	
	e	a i n	
	e p	a i n	
	e p	a i n	
	e p	a i n	
	e p h y l l l	a i n	
	e p	a i n	

14.	A	В	6
14.	A		0
	l	a	U
	r		
	0		0
	p	a	0
	a	d	
		0	
	a	n	
	c	a	
	u		
	m	(
	i	j	
	n	h	
	a	a	
	t	r	
	e	k	
	C	K a	
		a	
15	M)	1
15.	M	G	1
	0	u	0
	r	c	0
	c	h	0
	h	h	0
	e	i	
	1	e	0
	1	S	0
	a		
	e		
	S		
	c		
	11		
	1		
1	1		

	e		
	n		
	t		
	a		
16.	P	D	4
	0	0	0
	t	r	· ·
	P	i	
	n	1	0
	11 4		O
	:		
	1		
	1		
	a		
	n		
	e		
	р		
	a		
	1		
	e e		
	n		
	S :		
	S		
17.	P	K	1
	i	a	0
	S	k	0
	t	a	0
	a	r	
	c	S	0
	i	i	0
	a	n	-
	ı u	11	

		g	
	i	h	
	n	i	
	t		
	e		
	g		
	r		
	i		
	m		
	a		
18.	P	S	1
	0	a	0
	1	1	0
	y	a	0
	g	m	
	e		0
	n	M	0
	a	i	
	t	S	
	u	h	
	m	r	
		i	
	V		
	e	(
	r	R	
	t	S	
	i		
	c	2	
	i	-	
	1	3	
	1	0	
	a	0	
	t	0	

	u		
	m	k	
	/	g	
	c)	
	i		
	r		
	r		
	h		
	:		
	I		
	0		
	1		
	i		
	u		
	m		
	(
	m		
	e e		
	4		
	u -		
	a		
	m		
	a		
	h		
	a		
	m		
	e		
	d		
	я		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	,		
10	Α	n.	1
19.	A	Р	1

O				<u>_</u>
20.		c	a	5
i t t h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	t	0
U		n	i	0
U		i	S	
m (M M i i e t t t h i e t t h h i i e i e i i r o o o p h h y y l l l l l u m e e l t t t o o t t o o t t o o n i a a o o t t o o t t o o t t o o t t o o t t o o t t o o t t o o t t o o t t o o o t t o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o o t t o o o o t t o o o o t t o o o o t t o		t	h	0
m (M M i i e t t t h i e t t h h i i e i e i i r o o o p h h y y l l l l l u m e e l t t t o o t t o o t t o o n i a a o o t t o o t t o o t t o o t t o o t t o o t t o o t t o o t t o o t t o o o t t o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o t t o o o o t t o o o o t t o o o o t t o o o o t t o		,,	11	0
M		G		U
20.		m		
20.			M	
Ph h y I I I I I I I I I I I I I I I I I		h	i	
20.		e	t	
Ph h y I I I I I I I I I I I I I I I I I		t	h	
20.		e	i	
20.		r)	
Ph h y I I I I I I I I I I I I I I I I I		1	,	
M S O O O O O O O O O		0		
M S O O O O O O O O O		p		
M S O O O O O O O O O		h		
M S O O O O O O O O O		y		
M S O O O O O O O O O		1		
M S O O O O O O O O O		1		
M S O O O O O O O O O		11		
20. A M 5 c i i 0 o n t m h i a a 0 t m t m e l v i i a				
c i 0 o t 0 n h . i a 0 t 0 u t 0 u t 0 m e 1 v i i i a i	20		N/I	5
o t 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.		IVI	
n i i i t v t m l v i i i a i t v i a i a i a i i a i i a i i a i i a i i a i i a i i a i i a i i a i i a i i a i i a i i a i		c	1	0
t		0	t	0
t		n	h	•
u t e l l l l l l l l l l l l l l l l l l		i	a	0
u t e l l l l l l l l l l l l l l l l l l		t		0
m e l l i i a		in	t	v
v i a		-	٠	
v i a		111	C 1	
i a			1 .	
i a		V	1	
		i	a	
U		O		

	1		
	a		
	c		
	e		
	u		
	m		
21.		T	1
	S	h	8
	a	u	0
	1	t	
	v	h	0
	i		0
	a		
	m		
	0		
	0		
	r		
	c		
	r		
	0		
	t		
	t		
	i		
	9		
	n		
	a		
22.	В	K	2
22.	11	a	0
	u n	a 1	0
	ii ;	1	0
	1 1	a	U
	u m		. 0
	m	Z	U

			٥
		i	0
	p	r	
	e	a	
	r		
	S		
	i		
	c		
	u		
	m		
23.	S	В	4
23.			0
	e	u	
	1.	t .	0
	1	k	·
	n	e	0
	u	S	0
	m	h	
	V		
	a		
	g		
	i		
	n		
	11		
	a ,		
	l 		
	u		
	m		
24.	Т	В	6
	a	i	0
	X	r	0
	u	m	
	S	i	0
			0
	b		
L		1	

	a		
	c		
	c		
	a		
	t		
	a		
25.	R	K	1
	h	a	5
	0	S	0
	d	h	<u>.</u>
	0	m	0
	ď	i	0
	e	r	v
	n	i	
	d 	•	
	r	n	
		P	
	n	t t	
	II II	t t	
		t	
	c	a	
	0		
	m		
	p		
	a		
	n		
	u		
	I		
	a		
	t		
	u		
	m		
26.	T	G	1
	i	1	0

	n	0	0
			O
	0	e	
	S		0
	p		0
	0		
	r		
	a		
	C		
	0		
	0		
	Γ		
	d		
	i		
	f		
	0		
	1		
	i		
	a		
27.	0	S	6
21.	0		0
	Γ	a	0
	c	1	0
	h	a	0
	i	m	
	S		0
		p	0
	1	u	
	2		
	ι •	n ;	
	ι	J	
	1	a	
	f		
	0		
	1		
	i		
		I	

20	a		
28.	V	N	3
	a	i	0
	1	h	0
	e	a	
	r	n	0
	i	i	0
		1	V
	a		
	n		
	a		
	h		
	a		
	r		
	d		
	u W		
	W ·		
	1		
	c		
	k		
	i		
	i		
29.	A	В	1
	C	u	3
			0
	0	S	U
	r	n	•
	u		0
	S		0
	c		
	a		
	1		
	1		
	a		
	m		

	u		
20	S	T/	1
30.		K	
	P	a	0
	i	i	0
	n	1	0
	u		
	S	c	0
		0	0
	W	n	
	a	e	
	1	S	
	1	·	
	i		
	C		
	h		
	:		
	1		
	n		
	a	_	
31.	В	R	5
	e	a	0
	r	S	0
	b	a	
	e	u	0
	r	n	0
	i	t	
	S		
	a		
	u r		
	1		
	S		
	<u>t</u>		

<u> </u>	-	
a		
t		
a		
1		
В		
e		
r		
h		
e		
r		
i		
S		
a		
a		
S .		
i		
a		
t		
i		
C		
a		
В		
e		
r		
h		
U		
e		
r		
i		
e		
c		
5		
1		
y		
c		
1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1	

			T
	i		
	u		
	m		
32.	S	С	7
32.		<u> </u>	,
	W	11 .	0
	e	1	0
	r	r	
	t	y	0
	i	a	0
	a	t	
		a	
		a	
	C		
	n		
	1		
	r		
	a		
	t		
	a		
33.	A	D	8
33.	A		0
	d	u	U
	1	S	
	a	g	0
	n	t	0
	t	u	
	u	1	
	m	ļ	
	111	1	
	,		
	I		
	u		
	n		
	1		
	а		
	t t		
	ι		

	u		
	m		
34.	N	J	6
	a	a	9
	r	t	0
	d	a	
	0	m	0
	S	a	0
	t	n	
	a	S	
	c	i	
	h		
	v	(
	S	B	
		a	
	į	1	
	a	c	
	t	h	
	a	0	
	m	r	
	a	a	
	n)	
	S	,	
	i		
35.		С	2
	L	h	2
	i	a	5
	c	1	
	h	0	0
	e	r	0
	n	a	
	S		
36.	A	T	8

	•		_
	b	a	5
	i	1	
	e	i	0
	S	S	0
	_	~	·
	W	p	
	e	a	
	b	t	
	b	r	
	i	a	
	a		
	n		
	a		
37.	E	Е	5
	p	p	0
	h	h	
	e	e	0
	d	ď	0
		0	O O
	1		
	a	r	
		1	
	g	a	
	e	n	
	r	a	
	а		
	r	(
	l	(D	
	<u>a</u>	В	
	1	u	
	a	t	
	n	e	
	a	h	
		11	
		, u	
		Γ	

		\	
)	
38.	S	K	3
	a	u	0
	u	t	0
	S	h	
	S		0
	u		0
	r		
	e		
	a		
	u u		
	1		
	a		
	a		
	P		
	p		
	a		
39.	Н	K	7
	e	a	0
	d	p	•
	У	p	0
	c	e	0
	h	r	
	i		
	u	k	
	m	a	
		С	
	a	h	
	c	r	
	u	i	
	m	1	
	;		
	1 n		
	n		
	a		

	t		
	u		
	m		
40.	H	K	1
40.	y	h	5
	o y	a	0
		a 	O
	S	1	
	c	a	0
	У	S	0
	a	a	
	m	n	
	u	i	
	S		
		A	
	n	j	
	i	W	
	g	a	
	e	i	
	r	n	
41.	Н	P	2
	e	a	5
	r	t	
	a	i	0
	c	S	0
	1	h	
	e	a	
	u	n	
	m		
		r	
	s	0	
	p	o	
	p p	t	
	P		
		\$	

42.	G	В	1
	e	i	5
	r	c	0
	a	h	
	r	h	0
	d	u	0
	i		
	a	b	
	n	u	
	a	t	
		i	
	h		
	e		
	t		
	e		
	r		
	0		
	p		
	h		
	y		
	1		
	1		
	a		

By Order

P.T. Wangdi FC-cum-Secretary (Forests) to the Govt. of Himachal Pradesh.

Endst. No. Fts. (A) 3-A/77

- Copy to:
 1. PCCF H.P. with 50 spare copies.
- 2. All CFs/ DFOs in H.P.
- 3. All Deputy Commissioners in H.P.

Dated 17.8.1993

- 4. Controller Printing & Stationary Department Himachal Pradesh, Shimla-5 with the request to public in the Rajpatra (extraordinary)5. Guard file

APPENDIX No.-XLII

Government of Himachal Pradesh Department of Forest Farming & Conservation.

No. Fts-B(f)-13-49/98 Loose

Dated Shimla-2, 4th August, 2000

NOTIFICATION

In, exercise of the powers conferred by sections 41 and 42 of the Indian Forest Act, 1927 (16 of 1927), The Governor Himachal Pradesh is pleased to make the following rules to amend the Himachal Pradesh Forest Produce Transit (Land Routes) Rules, 1978 published in the Rajpatra Himachal Pradesh (Extra-Ordinary) dated the 5th March, 1997, vide Notification No. Fts (A)3-1/77, dated 17.8.1993, namely:-

- 1. Short Title i) These rules may be called the Himachal Pradesh Forest Commencement Produce Transit (land Routes) Amendment, Rules, 2000.
- ii) They shall come into force from the date of publication in the Rajpatra, Himachal Pradesh.
- 2. Amendment of In Annexure-D to the Himachal Pradesh Forest Produce Annexure-D. Transit (Land Routes) Rules, 1978, after item No. 42, the Following new items shall be added, Namely:-

S	В	L	E
r	0	0	X
	t	c	p
	a	a	0
N	n	l	r
0	i		t
•	c	n	
	a	a	p
	l	m	e

	-		
		e	r
	n		m
	a	0	i
	m	${f f}$	t
	e		
		m	F
	0	e	e
	f	ď	e
	•	i	Č
	m		(
		:	
	e	I	I
	d	n	n
	1	a	.
	c	1	R
	i		S
	n	p	•
	a	1	
	1	a	P
		n	e
	р	t	r
	ī	S	
	a		Q
	n		u
	t		i
	S		n
			t
			l
			a
			I
		D	<u>)</u>
4	С	D	5
3	e	a	0
		"	Ÿ
	d	r	/

_				
		r	i	-
		e		
		1	p	
		1	h	
		a	0	
		ű		
			О	
		S	1	
		p		
		p		
•	4	P	K	3
	4	у	a	0
		r	i	/
		u	n	_
		S	f	
		Ţ.	h	
			11	
		p		
		a		
		s		
		h		
		i		
		a		
L				

ſ				
		c		
		О		
		1		
		e		
		b		
		r		
		o		
		o		
		k		
		e		
		a		
	4	О	В	5
	5	p	i	0
		p	n	/
		O	d	-
		S	i	
		i		
		t	P	
		i	h	
		f	0	
		0	0	
		1	1	
L				

	i		
	a		
4	R	В	1
6	h	r	5
	o	a	0
	d	s	/
	o	s	-
	d		
	e	p	
	n	h	
	d	O	
	r	O	
	o	1	
	n		
	o		
	p		
	p		
4	С	P	3
7	0	a	0
	1	t	/
	e	h	-

	u	a	
	s	n	
	a	В	
	r	a	
	0	1	
	m	I	
	a		
	t		
	i		
	c		
	u		
	s		
4	L	G	2
8	i	r	5
	c	e	0
	h	e	/
	e	n	-
	n		
	S	M	
		0	
	a	u	

	n	S	
	d		
		G	
	M	h	
	0	a	
	S	S	
	S	S	
	e		
	S		
4	Н	K	2
9	У	h	5
	p	a	0
	e	a	/
	r	r	-
	i	e	
	c	r	
	u	a	
	m	/	
		В	
	p	a	
	a	S	
	t	a	

Ī		u	n	
		1	t	
		u	i	
		m		
=	5		В	5
		C		
	0	С	a	0
	•	u	n	/
		r		-
		c	Н	
		u	a	
		m	1	
		a	d	
			i	
		S		
		p		
=	_	p	D	1
	5	J	В	1
	1	u	e	0
		n	t	0
		i	h	/
		p	e	-
		e	r	
L				

r		
	p	
r	a	
e	t	
c	t	
u	a	
r		
v		
a		

The export permit fee levied on all 51 species in this agreement will be applicable irrespective of the fact whether the above species are collected from the forest or are grown domestically except that the above fee will not be levied on item No. 22 Bunium persicum (Kala Zira) and item No. 38 Saurrurea lappa (Kuth) in case they have been grown on private land. However, export permit fee will be chargeable in cases these two species have been collected from the forests.

By Order

FC-cum-Secretary (Forests) to the Government of Himachal Pradesh.

Endst. No. As above.

Dated Shimla-2, 4th August, 2000

Copy to:

1. The Joint Secretary (GAD) to the GoHP Shimla-2 w.r.t. item No. 18 of the meeting

dated 20.7.2000. letter No. Ft. 12-306/57 (M)-

- 2. The Principal Chief Conservator of Forests, Himachal Pradesh, Shimla-1 w.r.t. his XIII dated 5.5.2000
- 3. All the Conservator of Forests/Divisional Forest Officers in Himachal Pradesh.

- 4. The Controller, HP Printing and Stationary Department, Ghora Chowki, Shimla-5 for publication in the Rajpatra. 5 copies of the same be sent to this Department.
- 5. All the Deputy Commissioners in Himachal Pradesh.
- 6. The LR-cum-Secretary (Law) to the GoHP.
- 7. The Under Secretary (Finance) to the GoHP Shimal-2.
- 8. Guard file/spare copies (50 Nos.)

Addl. Secretary (Forests) to the Govt. of Himachal Pradesh.

Appendix No.- XLIII

No. Ft. 12-306/57(M)

Department of Forest Farming & Conservation, Himachal Pradesh, Dated Shimla-1, the 8th February, 1994

From: Principal C.C.F.H.P.

To: C.F. Rampur.

Subject:- Collection of Minor Forest Produce and formulation of four years cycle programme thereof. Memo:

- 1. Reference your letter No. C.XXVIII-F.VI-6895 dated 2.11.93 on the above cited subject.
- 2. In this connection, necessary extraction programme for Dioscorea deltoides has already been prescribed vide this office Memo No. Ft. 38-8/59(M) dated 6.4.1987. you may, therefore, formulated four years collection cycle for non-wood Products for each Range Division wise for your circle at your own level on the pattern of extraction programme for Dioscorea for all these species. However, as rightly suggested by you the programme to be followed will not be applicable for perishable species which are of annual and bia-annual basis.

Pr. Chief Conservator of Forests, Himachal Pradesh.

From St.No.Ft.12-306/57(M)

Dated Shimla-1, the

Copy alongwith copy of C.F.Rampur's Memo. To which it is a reply is forwarded to:-

- 1. All CCFs in H.P.
- 2. All CFs (T)
- 3. All DFOs (T) and (Wild Life) in H.P.

For information and formulation of four years collection cycle for each Range/Division on the pattern of extraction programme for Dioscorea circulated vide this office Memo. No. Ft. 38-8/59(M) dated 6.4.1987. A copy of the programme so framed be also sent to this office.

Pr. Chief Conservator of Forests, Himachal Pradesh

Appendix No.- XLIV

GOVERNMENT OF HIMACHAL PRADESH DEPARTMENT OF FORESTS

No. FFE-B-G (9)-9/94-II dated Shimla-2, the 28th February, 2003

NOTIFICATION

In exercise of the powers conferred under sub section (2) of section 2 of the Indian Forest Act, 1927, the Governor, Himachal Pradesh is pleased to appoint Pradhans of the Gram Panchayats in Himachal Pradesh as Forest Officer to carry out the purpose of rule 11 of the Himachal Pradesh Forest Produce Transit (Land Routes) Rules, 1978 for the issuance of pass for transport of minor forest produce collected from the forests in the concerned paychayats under to the conditions that the provisions of the Himachal Pradesh Forest Produce Transit (Land Routes) Rules, notified vide Notification No. Fts. (A)/3-1/77 dated 20.11.1978 and published in the Rajpatra, Himachal Pradesh (Extra Ordinary) dated 4th March, 1978 as amended from time to time by the Government shall be adhered to.

- 2. The Governor, Himachal Pradesh is further pleased to order that the Pradhans of the concerned panchayats shall issue pass for the item/species numbering 38 as listed in (Annexure-A) to this Notification as per export fee prescribed therein and the fee so realized shall form the revenue of the Gram Panchayats.
- 3. The Governor, Himachal Pradesh is further pleased to order that the Forest Guard of the area shall make recommendations to issue pass after verifying that the species for which such pass is to be issued are not banned for export and that the species are extracted from the prescribed area in the approved extraction cycle and that the extraction has been done in a sustainable manner and has not caused any ecological or environmental damage. No-adherence to the above conditions may debar a Pradhan from issuing the pass for export and in such a case the powers shall revert to the concerned officer of the Forest Department who was exercising these powers prior to issuance of this Notification.

By Order Principal Secretary (Forests) to the Government of Himachal Pradesh.

Endst. No. As above. Dated Shimla-2, the 28th February, 2003

Copy forwarded to for favour of information and necessary action to:-

- 1. All the Administrative Secretaries to the Govt. of Himachal Pradesh Shimla.
- 2. The Principal Chief Conservator of Forests, H.P. Shimla-1.
- 3. The Principal Chief Conservator of Forests (Wildlife) Himachal Pradesh, Shimla.
- 4. All the Heads of Departments in Himachal Pradesh.
- 5. All the Conservator of Forests, Himachal Pradesh.
- 6. All the Deputy Commissioners in HP.
- 7. All the Divisional Forest Officer in HP.
- 8. The Controller Printing and Stationary Department, HP Shimla-171005 with the request that the Notification be published in the Rajpatra (Extra Ordinary) and five copies of the Rajpatra be sent to this Department.
- 9. Guard File
- 10. Spare copies (20)

Sd/-

Joint Secretary (Forests) to the Government of Himachal Pradesh.

Annexure- A

List of Medicinal Herbs and other Non Timber Minor Forest Produce on which control is proposed to be decontrolled and given to the concerned Panchayats vide Government Notification no. FFE-B-G (9)-9/94-II dated 28-2-2003

S	В	${f L}$	${f E}$
r	0	0	X
	t	c	p
	a	a	0
N	n	l	r
0	i		t
	c	n	
	a	a	${f F}$
	1	m	e
		e	e
	n		
	a	0	(
	m	f	i
	e		n
		t	
	0	h	R
	f	e	S
			•
	t	I	
	h	t	P
	e	e	e
		m	r
	M		
	i		Q
	n		u
	0		i
	r		n
			t
	F		a
	0		l
	r)
	e		
	S		

	T		
	t		
	D		
	r		
	r		
	0		
	d		
	u		
	u		
	c		
	e		
1	A	S	5
1	Α	S	3
	n	a	0
	S	t	/
	e	h	_
	1		
	1		
	1	J	
	a	a	
		1	
		1	
	a	0	
	p	r	
	t	i	
	r		
	1		
	a		
2	P	K	5
	i	a	4
·		r	n O
	· ·		U ,
	r	0	
	0	0	-
	r		
	h		
	<i>n</i> .		
	i		
	z		
	a		

	K		
	u		
	r		
	r		
	O		
	o		
	a		
3	J	D	5
	u	h	0
	r	0	0
	į	0	
	n	Ů	,
	n	p	-
	e		
	a		
	m		
	a		
	c		
	r		
	o		
	c		
	e		
	n		
	<i>P</i>		
	n a		
	$\frac{u}{t}$		
	l		
	a		
4	A	С	1
	n	h	2
	g	0	5
	e	r	/
	l	a	-
	i		
	<u>'</u>		

	С		
	a		
	u		
	g		
	ι		
	a		
	u		
	c		
	a		
5	V	В	2
	i	a	2
	O	n	5
	l	a	0
	a	f	/
		S	-
	S	h	
	e	a	
	r		
	n		
	r e		
	n		
	S		
6	V	M	6
0	, , , , , , , , , , , , , , , , , , ,		0
	$a_{_{1}}$	u	0
	l .	S 1-	U /
	e	h	/
	<i>r</i> .	b	-
	i	a	
	a	1	
	n	a	
	a		
	W		

	a		
	1		
	1		
	l		
	i		
	C		
	h		
	i		
	;		
	T.	24	2
7	T	M	3
	h	a	3
	a	m	5
	1		<i>5</i>
	l	r	/
	i	i	-
	C		
	C .		
	t		
	r		
	u		
	m		
	S		
	p		
	p		
8	T	В	1
•	h	a	U
	y	n	0
	m	a	/
		:	/
	и	J	-
	S	W	
		a	
		:	
	S	1	
	e	n	
	n		
	P 1		
	n		

	У		
	l		
	1.		
	,		
	u		
	m		
9	M	G	1
	0	u	0
	r	c	
		h	,
	1	11.	0
	n	n	Ü
	e	i	0
	l		/
	1		-
	a		
	а		
	e		
	S		
	\mathcal{C}		
	11		
	1		
	ι		
	e		
	n		
	t		
	a		
1	P	D	Λ
	<i>I</i>		4
0	0	0	Ü
	t	r	/
	e	i	-
	n		
	<i>t</i>		
	;		
	ι		
	l		

	a		
	n		
	0		
	e		
	p		
	а		
	l		
	ρ		
	79		
	n		
	S		
	i		
	S		
1	P	K	1
1	:		1
1	ι	a	,
•	S	K	0
	t	a	0
	а	r	0
	C	g	/
	;	:	,
	ι	I	-
	a	n	
		g	
	i	h	
	n	i	
	10	1	
	ι		
	e		
	g		
	e		
	r		
	1		
	ι		
	m		
	a		
1	Р	S	1
1	, <u> </u>	Б	1

2	0	0	
2	0	a	,
•	l	1	
	у	a	0
	g	m	0
	0		/
	n	M	-
	a	i	
	t t	S	
		•	
	u	h	
	m	r	
		i	
	v		
	a		
	t		
	i		
	C		
	:		
	l		
	a		
	t		
	и		
	m		
1		T	1
3	S	h	8
			0
		u	U
		t .	
	v	h	-
	i		
	a		
	m		
	0		
	0		

	I		
	r		
	С		
	r		
	0		
	<i>t</i>		
	;		
	ι		
	a		
	n		
	a		
1	В	K	2
4	u	a	0
	n	1	0
·	i	a	0
	1 1	a	,
	u		/
	m	Z	-
		1	
	p	r	
	e	a	
	r		
	S		
	i		
	C		
	u		
	m		
1	S	В	4
5	e	u	0
	1	t	0
	i	k	/
	n	e	, _
	u	S	
	m	h	
	V		

	a		
	g		
	i		
	n		
	II		
	a		
	t		
	u		
	m		
1	T	G	1
6	i	1	0
Ŭ	11	0	0
·	n	Ŭ	U ,
	0	e	/
	S		
	p		
	0		
	r		
	a		
	c		
	a		
	r		
	d		
	i		
	f		
	0		
	1		
	<i>i</i> :		
	l		
	a		
1	D	S	6
7	a	a	0
	c	1	0
	t	a	0
	v	m	/
	y	111	1

	l		-
	0	P	
		_	
	r	a	
	h	n	
	i	j	
	7	a	
		u	
	a		
	h		
	a		
	4		
	ι		
	a		
	g		
	\ddot{i}		
	70		
	<i>I</i>		
	e		
	а		
1	V	N	6
8	, a	;	0
O	u	1	0
•	l	h	0
	e	a	
	r	n	-
	i	i	
	ı	1	
	a		
	n		
	а		
	1.		
	h		
	a		
	r		
	d		
	W		

	С		
	l,		
	κ :		
	l		
	l	_	
1	A	В	1
9	c	a	3
	0	r	0
	r	i	/
	и	a	-
	S	n	
		/	
	c	В	
	a	a	
	1	a C	
	i a	b b	
	a	h	
	m		
	u		
	S		
2		K	1
0	P	a	5
	i	i	0
	n	1	/
	и		-
	S	c	
	· ·	0	
	W	n	
	W	e e	
	<i>u</i> 1	ř	
	l 1	S	
	l		
	i		
	С		
	h		
	i		

	n		
	a		
2	A	D	8
1	d	u	0
	i	S	/
	a	g	-
	n	t	
	t	u	
	u	1	
	m	i	
	l		
	u		
	n		
	u		
	1		
	a		
	t		
	u		
	m		
2		C	2
2	L	h	2
	i	a	5
	c	1	/
	h	O	-
	e	r	
	n	a	
	S		
2	C	T	8
3	i	e	5
	n	j	/
	n		-
	а	p	

	m	a	
	0	t	
	n	t	
	;	9	
	ι	a	
	u		
	m		
	t		
	a		
	m		
	a		
	l		
	a		
2	Н	K	7
4	e	a	0
·	d		/
•	u 	p	/
	У	p	-
	c	e	
	h	r	
	i		
	u	K	
	m	u	
		C	
	a	h	
	\mathcal{C}	r	
	u	i	
	m		
	i		
	1		
	n		
	a		
	t		
	u		
	m		
		ı	

2	11		2
2	H	P	2
5	e	a	5
•	r	t .	/
	a	i	-
	C	S	
	l	h	
	e	a	
	u	n	
	m		
		r	
	S	0	
	p	0	
	$\stackrel{r}{p}$	t	
	I	S	
2	G	В	1
6	e	i	5
	r	C	0
·	, a	h	/
	r	h	, _
	d	u	
	i	u	
		b	
	u n		
	n	u 4	
	a	t :	
	1.	1	
	n		
	e		
	t		
	e		
	r		
	0		
	p		
	h		

	y		
	l		
	l		
	a		
2	C	D	1
7	e	e	5
	d	0	0
	a	d	/
	r	a	, _
	•	r	
	r	1	
	,	R	
	0	_	
	S	0	
	e	S	
	t	S	
	t	e	
	e	t	
		t	
		e	
2	B	K	1
8	i	u	5
	r	S	0
	c	h	/
	h		_
		c	
	n	0	
	i = i	n	
	n	ρ	
	n	0	
2	е С	D D	5
2	C	В	5
9	e	a	U
•	d	r	/
	r	1	-

	e		
	1	p	
	1	ĥ	
	ι	II	
	a	0	
		0	
	S	1	
	S	1	
	p		
	p		
3	P	K	3
	1	K	3
0	У	a	0
	r	i	/
	11	n	_
	и	11	-
	S	t	
		h	
	p		
	P		
	a		
	S		
	h		
	;		
	ι		
	a		
3	C	В	5
1		i	
1	0	1	,
•	l	n	/
	e	d	-
	h	i	
		•	
	r		
	o	p	
	0	h	
	<i>d</i>		
	a	0	
	e	0	
	a	1	
	0		

	p		
	$\stackrel{\cdot}{p}$		
	P		
	o		
	s		
	i		
	t		
	i		
	\mathcal{L}		
	J		
	o		
	l		
	i		
	a		
2	R	D	1
3	K .	В	1
2	h	r	5
	0	a	0
	d	S	/
	0	S	<u>.</u>
		3	_
	a		
	e	p	
	n	h	
	d	0	
	v	0	
	,	1	
	0		
	n		
	ı		
	a		
	n		
	p		
	p		
3	C	P	3
3	0	a	0
	1	t	/
•		h	,
	ϵ	11	-
	и	a	

	S	n	
		To the state of th	
	a	В	
	r	a	
	0	1	
	m	1	
	a		
	t		
	i		
	С		
	u		
	S		
3	L	G	2
4	i	r	5
	c	e	0
	h	e	/
	e	n	-
	n		
	S	M	
		0	
	a	u	
	n	S	
	d		
		G	
	M	h	
	o	a	
	S	s	
	S	s	
	e		
	S		
3	Н	K	2
5	y	h	5
	p	a	0
1	•		

	e	a	/
	r	r	-
	i	e	
	c	r	
	u	a	
	m	/	
		В	
	p	a	
	$\frac{P}{a}$	8	
	t t	3	
	<i>i</i>	a	
	U 1	n	
	l	t :	
	u	1	
	m		
3		В	5
6	C	a	0
	u	n	/
	r		-
	c	Н	
	u	a	
	m	1	
	a	d	
		i	
	S	-	
	n		
	p p		
3	T I	В	1
7	11		0
	u "	e	0
·	П :	l 1	U
	1	n	/
	p	e	-
	e	r	
	r		

	ļ	p	
	r	a	
	e	t	
	c	t	
	u	a	
	r		
	V		
	v o		
	ä		
3	D	C	5
8	r	h	/
	y	i	-
		1	
	n	1	
	i	a	
	1	r	
	n	1	
	e	u	
	n		
	e		
	e		
	d		
	1		
	·		
	e		
	S		

APPENDIX No-XLV

HIMACHAL PRADESH GOVERNMENT FOREST DEPARTMENT

NOTIFICATION

Dated Shimla-4, the 25th February, 1952.

No. Ft.43-241-E/49-3. In exercise of the powers conferred by section 30 (c) of the Indian Forest Act (XVI of 1927) as applied to Himachal Pradesh read with the Government of India, Ministry of State Notification No. 146-J dated the 6th December, 1950, the Chief Commissioner, Himachal Pradesh is pleased to prohibit the breaking up or clearing for cultivation for building, for herding cattle or for any other purpose of land in the Demarcated Protected Forests throughout Himachal Pradesh.

By Order

Sd/-

Secretary (Forest Department) to the

Chief Commissioner, Himachal Pradesh Admn.

No. Ft.43-241-E/49-3

Dated Shimla-4, The 25th February, 1952.

Copy forwarded to the:-

- (1) All Deputy Commissioners in Himachal Pradesh.
- (2) All Conservators of Forests, Himachal Pradesh.
- (3) All Divisional Forest Officers in Himachal Pradesh for information.
- (4) The Manager, Government of India Press, Shimla for favour of publication in Part III Section 3 of Government of India Gazette.

Secretary (Forest Department) to the Chief Commissioner, Himachal Pradesh Admn.

Appendix No.- XLVI

List of existing JFMC in respect of FDA Rampur Rampur Forest Division				
\$	N	N	N	N
1	a	a	a	a
	m	m	m	m
	e	e	e	e
1				
	0	R	0	0
	f	a	f	f
		n		
	J	g	В	В
	${f F}$	e	l	e
	M		0	a
	\mathbf{C}		c	t
			k	
	K	S	J	R
	i	a	a	a
	a	r	g	W
	0	a	h	a
		h	0	n
		a	r	c
		n	i	h
				a
1	В	-	-	J
	r	d	d	a
	a	О	0	g
	n	-	-	h
	d			О
	a			r
				i

1	C			I I
	C	-	-	-
	h	d	d	d
	a	0	О	О
	n	-	-	-
	d			
	i			
	1			
	5			
	/			
	2			
	2 0			
	N	-	P	Р
	a	d	h	h
	n	О	a	a
	t .	-	n	n
	i		C	c
	-		h	h
	T .		a	a
	1			
	k			
	k			
	a			
	r			
	G	-	J	R
	a	d	a	a
	n	0		W
	v	-	g h	a
	i		0	
	1			n
			r :	C h
			i	h
				a

1	1	l i		- I
	P	-	P	P
	a	d	h	h
	S	О	a	a
	h	-	n	n
	g		c	c
	a		h	h
	O		a	a
	n			
	В	-	S	В
	a	d	a	a
	d d			d d
		О	r	
	h	-	a	h
	a		h	a
	1		a	1
			n	
	S	-	-	S
	a	d	d	a
	r	О	0	r
	a	-	-	a
	h			h
	a			a
	n			n
	S	-	-	-
	h	d	d	d
	i	0	0	0
		-	-	-
	g a	_	_	_
	g			
	- D			
	R			
	e			
	0			
	S			

İ	1	1		I I
	h			
	a			
	r			
	M	-	G	M
	a	d	0	a
	j	0	p	S
	h	_	a	h
	e		1	a
	О		p	n
	1		u	0
	i		r	0
	M	_	-	D
		d	- d	
	a s	u o	0	o f
				1
	h	-	-	d
	a			a
	n			
	0			
	0			
	D	-	-	-
<u>'</u>	l a	d	d	d
	r	О	0	О
	a	-	-	-
	n			
	C	-	-	G
	h	d	d	О
	a	o	0	р
	d	-	-	a
	a			1
	1			p
	i			u u
	1			r
	S			
	3	-	-	-
L	l .	i .		1

1	1	1	1	1
	4 a	d	d	d
	n	0	0	О
	a	_	_	_
	r			
	S			
	a			
	G	-	-	-
	a	d	d	d
	u	0	0	0
	r	-	-	-
	a			
	M	R	N	D
	a	a	0	a
	k	m	g	n
	r		5 1	S
		p	;	
	0	u	1	a
		r		
	1			
	-			
	K			
	a			
	S			
	h			
	0			
	g			NT.
	В	-	-	N
	a	d	d	0
	t	0	0	g
	u	-	-	1
	n			i
	a			
	D	N	S	D
	0	a	h	e
	1 0	ı	11	

i	n	О	1
	k	1	a
	h	i	t
	a		h
	r		
	i		

Appendix No.-XLVII

NOTIFICATION

No. 17-29/75 (Rev-III) dated 4/5/1979.

In exercise of the powers conferred by section 47 of the Himachal Pradesh and Revenue Act, 1953, the Financial Commissioner, Himachal Pradesh is pleased to Make the following Rule for making entries in Land Records of the land constituted as Demarcated Protected Forest during Forest Settlement:-

The change of land record entries in a particular holding will be made in the remarks column of the last Jamabandi. The change of class of land from that of Banjar Kadim etc. into Deparcated Protected Forest and that of possession in favour of Forest Department will be made in the said column by the Patwari, to be compared by Kanungo and attested by Revenue Officer who will sign the entry as taken of attestation.

At the same time changes made will be mentioned in Roznamcha wakiati by the Patwari.

(H.S. Dubey),

Financial Commissioner to the

Government of Himachal Pradesh.

No.17-235/75(Rev-III) Dated Shimla-171002 the 4/5/79.

Copy is forwarded to:-

- 1. Deputy Controller, printing & Stationery, Himachal Pradesh Govt. Press, Shimla- 171004 for favour of publication in Rajpatra.
- 2. All the Deputy Commissioners in H.P.
- 3. The Divisional Commissioner, H.P.
- 4. The Settlement Officer, Kangra/Kinnaur H.P.
- 5. The Secretary (Forests0 to the Govt. of H.P. Shimal-171002 for information.

Deputy Secretary (Revenue) to the Govt. of H.P.

Appendix No.-XLVIII

Government of Himachal Pradesh Forest Department

NOTIFICATION

No.FFE-B-E(3)-31/2001-1

Dated: Shimla-2, the

19th February, 2011.

Whereas, the Expert committee constituted by the State Government in compliance of interim order dated 12.12.1996 of the Hon'ble Apex court in writ Petition (C) 202 of 1995 titled – T.N. Godaverman Vs union of India and others decided that the 'compact wooded block' above 5 ha which are not recorded as 'forest' in the revenue record shall be treated as 'forest'.

- 2. And Whereas, during the hearing of Civil Appeals No. 8133, 8134 nd 8135 of 2003 on 01.02.210 in the Central Empowered Committee constituted by the Hon'ble Supreme Court of India in Writ Petition (c) 202 of 1995 titled T.N. Godaverman Vs Union of India and others, it was suggested by the Central Empowered Committee that the definition of 'Forests' as defined by the State of Himachal Pradesh needs further clarification by way of certain definable parameters.
- 3. And Whereas the Central Empowered Committee vide its recommendations dated 7th September, 2010 communicated to the Hon'ble Apex Court that the CEC is in agreement with the definition of the 'compact wooded block' decided by the state and recommended that the Civil Appeals No.8133, 8134 and 8135 of 2003 may be decided with the direction that the State of Himachal Pradesh will notify the decision of 'compact wooded block' decided by it immediately.
- 4. And Whereas on the recommendations/Report of the Central Empowered Committee, the Hon'ble supreme court of India on 22/11/2010 in the above matter has passed following order:-

5.

"The CEC vide its report dated 7th September, 2005 inter alia observed that it will be appropriate that the State of Himachal notifies the definition of Compact Wooded Block as decided by the Himachal Pradesh Forest Department.

Learned counsel for the State of H.P. submits that so far the State did not issue any such Notification. In such circumstances, we direct the State of H.P. to examine the issue and issue appropriate Notification in this regard shall be issue within three months today."

Now therefore, in compliance of the above order of the Hon'ble Apex Court, the definition of 'forest'/ 'compact wooded block' is notified as under:-

- 1. "If the private area is notified under Indian Forest Act, 1927 or other Act or is entered as van /ban/ vani/ jungle in the revenue record it will be treated as forest."
- 2. For other type of areas not recorded as indicated in point 1.

There are two components under this definition:-

Compactness of the area 5 Ha. and

Woodiness in this area of above 5 Ha.

According, the definition in different agro-climatic zones wooded be as under:-

i) **Temperate areas:-** These areas consisting of conifer forests of deodar, for, spruce, kail, and of oaks rhododendrons and other broad leaved species will be defined as under:-

"A compact wooded private area of more than five hectares constituted by itself or in contiguity with private khasras of one or more than one land owners and having mare than 400 trees of natural original and not of plantation origin per hectare of Class-III and above in this compact wooded block will constitute a forest."

ii) **Sub-tropical areas:-** The areas consisting of chil, khair and other broad leaved forest species will be defined as under:- **Chil forest:-** The above definition for temperate area will hold good in these forest.

Khair and other broad leaved species: "A compact wooded private area of more than five hectares constituted by itself or in contiguity with private khasras of one or more than one land owners and having more than 800 trees of natural origin and not of plantation origin per hectares of less than class III or for a mixed crop (mature and young) the trees being worked out by taking one mature tree equal to two young trees being worked out by taking one mature tree equal to two young trees and vice versa in this compact wooded block will constitute a forest".

By Order Principal Secretary (Forests) to the Government of Himachal Pradesh.

Endst. No. FFE-B-E(3)-31/2001-1 Dated:Shimla-171002, the 19/02/2011 Copy forwarded for information and necessary action to:-

- 1. The Private Secretary to his Excellency Governor of H.P. Shimla-2.
- 2. The Private Secretary to Hon'ble Chief Minister H.P. Shimla-2.
- 3. The Principal Chief Conservator of Forests, HP, Shimla-1 with 10 spare copies.
- 4. The Principal Chief Conservator of Forests, Wildlife, HP, Shimla-1 with 10 spare copies.
- 5. The M.D. HPSDFC, Kasumpti, Shimla-9.
- 6. The Joint Secretary (Law) to the GoHP, Shimla-2.
- 7. All the Deputy Commissioners in Himachal Pradesh.
- 8. All the Addl. Principal CCFs / CF and Conservators of Forests/Divisional Forest Officers in H.P.
- 9. The Controller, HP Printing & Stationery department Ghora Chowki, Shimla-5 for ordinary). publication in Rajpatra (Extra
- 10. Guard file (50 copies).

By Order Principal Secretary (Forests) to the Government of Himachal Pradesh.

Appendix No.- XLIX

IN THE SUPREME COURT OF INDIA CIVIL ORIGINAL JURISDICTION

WRIT PETITION (CIVIL) NO. 202 OF 1995

T.N.GODAVARMAN Thirumulkpad

...Petitioner.

Versus

Union of India & Ors.

...Respondents.

(With W.P. (Civil) No. 171/96)

ORDER

In view of the create significance of the points involved in these matters, relating to the protection and conservation of the forests throughout the country, it was considered necessary that the States are heard. Accordingly, notice was issued to all of them. We have heard the learned Attorney General for the Union of India, Learned counsel appearing for the States and the parties/applicants and, in Union, the learned Amicus Curiae, Sh. H. N. Salve, assisted by Servashri U. Lalit, Mahender Dass and P.K. Manohar, After hearing all the learned counsel, who have rendered very able assistance to the court, We have formed the opinion that the matters require a further in depth hearing to examine all the aspects relating to the National Forest Policy. For this purpose, several points which emerged during the course of the hearing require further study by the learned counsel and, therefore, we defer the continuation of this hearing for some time to enable the learned counsel to further study these points.

However, we are of the opinion hat certain interim directions are necessary at this stage in respect of some aspects. We have heard the learned Attorney General and the other learned counsel on these aspects. It has emerged at the hearing that there is a misconception in certain quarters about the true scope of the Forest Conservation Act. 1980(for short the 'Act') and

the meaning of the word "forest" used therein. There is also a resulting misconception about the need of prior approval of the central Government, as required by Section 2 of the Act in respect of certain activities in the forest area which are more often of a commercial nature. It is necessary to clarify that position.

The Forest Conservation Act, 1980 was enacted with a view to check further deforestation which ultimately results in ecological imbalance; and therefore, the provisions made therein for the conservation of forests and for matters connected therewith, must apply to all forests irrespective of the nature of ownership or classification thereof. The word "forest" must be understood according to its dictionary meaning. This description covers all statutorily recognized forests, whether designated as reserved, protected or otherwise for the purpose of Section 2(i) of the Forest Conservation Act, 1980. The term "forest land" occurring in Section 2, will not only include "forest" as understood in the dictionary sense, but also any area recorded as forest in the Government record irrespective of the ownership. This is how it has to be understood for the purpose of Section 2 of the Act. The provisions enacted in the Forest Conservation Act, 1980 for the conservation of forests and the matters connected therewith must apply clearly to all forests so understood irrespective of the ownership of classification thereof. This aspect has been made abundantly clear in the decisions of this court in Ambica Quarry Works and Ors versus State of Gujarat and ors (1987 (1) SCC 213), Rural Litigation and Entitlement Kendra Versus State of U.P. (1989) Suppl. (1) SCC 504), and recently in the order dated 29th November, 1996 in W.P. (C) No. 749/95 (Supreme Court Monitoring Committee Vs. Mussorie Dehradun Development Authority and ors). (1985(3) SCC 663) has, therefore to be understood in the light of these subsequent decisions We consider it necessary to reiterate this settled position emerging from the decisions of this court to dispel the doubt, if any, in the perception of any State Government or authority. This has become necessary also because of the stand taken on behalf of the State of Rajasthan, even at this late stage, relating to permissions granted for mining in such area which is clearly contrary to the decisions of this court. It is reasonable to assume that any State Government which has failed to appreciate the correct position in law so far, will forthwith correct its stance and take the necessary remedial measure without any further delay.

We further direct as:-

1.General:

In view of the meaning of the word "forest" in the Central Government is required for any non-forest activity within the area of any "forest". In accordance with Section 2 of the Act, all on-ongoing activity within any forest in any State throughout the country, without the prior approval of the Central Government, must cease forthwith. It is, therefore, clear that the running of saw mills of any kind including veneer or plywood mills, and mining of any mineral are non-forest purposes and are, therefore, not permissible without prior approval of the Central Government. Accordingly any such activity is prima facie violation of the provisions of the Forest Conservation Act, 1980. Every State Government must promptly ensure total cessation of all such activities forthwith.

- 2. In addition to the above in the tropical wet even-green forests of Tirap and Changlang in the State of Arunachal Pradesh, there would be a complete ban on felling of any kind of trees in because of their practical significance to maintain ecological balance needed to preserve bio-diversity. All saw mills, veneer mills and ply-wood mills in Tirap and Changlang in Arunachal Pradesh and within a distance of 100 kms. From its border in Assam, should also be closed immediately. The State Governments of Arunachal Pradesh and Assam must ensure compliances of this direction.
- 3. The felling of trees in all forests is to remain suspended except in accordance with the working plans of the State Governments, as approved by the Central Government. In the absence of any Working plan in any particular State, such as Arunachal Pradesh, where the permit system exists, the felling under the permits can be done only by the Forests Department of the State Government or the State Forest Corporation.
- 4. There shall be a complete ban on the movement of cut trees and timber from any of the Seven North-Eastern States to any other State of the country either by rail, road or water-ways. The Indian Railways and the State Governments are directed to take all measure necessary to ensure strict compliance of this direction. This ban will not apply to the movement

of certified timber required for deface or other Government purposes. This ban will also not affect felling in any private plantation comprising of trees planted in any area which is not a forest.

- 5. Each State Government should constitute within one month an Export Committee to:-
- (i) Identify areas which are "Forests" Irrespective of whether they are so notified, recognized or classified under any law, and irrespective of the ownership of the land of such forest;
- (ii) Identify areas which were earlier forests but stand degraded, denuded or cleared; and
- (iii) Identify areas covered by plantation trees belonging to the Government and those belonging to private persons.
- 6. Each State Government should within two months, file a report regarding:-
- (i) The number of saw mills, veneer and plywood mills actually operating within the State, with particulars of their real ownerships;
- (ii) The licensed and actual capacity of these mills for stock and sawing;
- (iii) Their proximity to the nearest forest;
- (iv) Their source of timber:
- 9. Each State Government should constitute within one month an Expert Committee to assess:
- (i) The sustainable capacity of the "forests of the State qua saw mills and timber based industry
- (ii) The number of existing saw mills which can safely be sustained in the State;
- (iii) The optimum distances from the forest, quo that State, at which the saw mill should be located.
- 8. The Expert Committees so constituted should be requested to give its report within one month of being constituted.
- 9 Each State Government would constitute a Committee comprising of the Principal Chief Conservator of Forests and another Senior Officer to over see the compliance of this order and file status reports.

II FOR THE STATE OF JAMMU AND KASHMIR:

- 1. There will be no felling of trees permitted in any forests" public or private. This ban will not affected felling any private plantations comprising of trees planted by private persons or the Social Forestry Department of the State or Jammu and Kashmir and in such plantations, felling will be strictly in accordance with law.
- 2. In "Forests" the State Government may either departmentally of through the State Forest Corporation remove fallen trees or fell and remove diseased or dry standing timber and that only from areas other than these notified under the Jammu & Kashmir Wild life Protection Act. 1978 or any other law banning such following or removal of trees.
- 3. For this purpose, the State Government will constitute an Expert Committee comprising of a representative being an IFS Officer posted in the State of Jammu & Kashmir, a representative of the State Government and two private experts of eminence and the Managing Director of the State Forest Corporation (as Member Secretary) who will fix the qualitative and quantitative norms for the following of fallen trees, discussed and dry standing trees. The stage shall ensure that the trees so felled and removed by it are strictly in accordance with these norms.
- 4. Any felling of trees in forest or otherwise or any clearance of land for execution of Projects shall be in strict compliance with Jammu & Kashmir Forest Conservation Act. 1990 and any other laws applying thereto. However, any trees so felled, and the disposal of such trees shall be done exclusively by the State Forest Corporation and no private agency will be permitted to deal with this aspect. This direction will also cover the submerged areas of the THEIN DAM.
- 5. All timber obtained as aforesaid or otherwise, shall be utilized within two state, preferably to meet the timber and fuel wood requirements of the local people, the Government and other local institutions.
- 6. The movement of trees or timber (sawn or otherwise) from the State shall for the present, stand suspended, except for the use of DGS & D, Railways and Defence. Any such movement for such use will-
- a) Be affected after due certification, consignment wise made by the Managing Director of the State Corporation which will include certification that the timber has come from State Forest Corporation source; and
- b) Be undertaken by the Corporation itself, the Jammu and Kashmir Forest Department or the receiving agency.

7. The State of Jammu and Kashmir will file preferably within one month from today, a detailed affidavit specifying the quantity of timber hold by private persons purchased from State Forest Corporation Depots for transport outside the Static (other than for consumption by the DGS & D, Railways and Defense).

Further directions in this regard may be considered after the affidavit is filed.

8. No saw mill, veneer or plywood mill would be permitted to operate in this State at a distance of less than 8Kms. From the boundary of any demarcated forest areas. Any existing mill falling in this belt should be relocated forthwith.

III. FOR THE STATE OF HIMACHAL PRADESH AND THE HILL REGIONS OF THE STATES OF UTTER PRADESH AND WEST BENGAL:

- 1. There will be no felling of trees permitted in any forest, Public or private. This ban will not affect felling in any private plantation comprising of trees planted in any area which is not apply to permits granted to the right holders for their bonafide personal use in Himachal Pradesh.
- 2. In a 'forest' the State Government may either departmentally or through the State Forest Corporation remove standing timber from areas other than those notified under Section 18 or Section 35 of the Wild Life protection Act, 1972 or any other Act banning such felling or removal of trees.
- 3. For this purpose, the State Government is to constitute an Expert Committee comprising a representative from MOEF, a representative of the State Government two private experts of eminence and the MD of the State Forest Corporation (as Member Secretary) who will fix the qualitative and quantitative norms for the felling of fallen trees and diseased and standing timber. The Static shall ensure that the trees so felled and removed are in accordance with these norms.
- 4. Felling of trees in any forest or any clearance of forest land in execution of projects shall be in strict conformity with the Forest Conservation Act.1980 and any other laws applying thereto. Moreover, any trees so felled and the disposal of such trees shall be done exclusively by the State Forest Corporation and no private agency is to be involved in any aspect thereof IV. FOR THE STATE OF TAMIL NADU:-

- 1. There will be a complete ban on following of trees in all 'forest area' This will, however not apply to:-
- (a) Trees which have been planted and grown, and are not of spontaneous growth, and
- (b) Are in areas which were nor forests earlier but were cleared for any reason.
- 2. The State Government within four weeks from today, is to constitute a Committee for identifying all 'forests'
- 3. These tribals who are part of the social forestry programme in respect of patta lands, other than forests, may continue to grow and cut according to the Government Scheme provided that they grow and cut trees in accordance with the law applicable.
- 4. In so far as the plantations (tea, coffee, cardamom etc. are concerned, it is directed as under:-
- a) The felling of shade trees in these plantations will be-
- i) Limited to trees which have been planted and not these which have grown spontaneously;
- ii) Limited to the species identified in the TANTEA report;
- iii) In accordance with the recommendations of '(including to the extent recommended by) TANTEA report;
- iv) Under the supervision of the statutory committee constitute by the State Government;
- b) In so far as the fuel trees planted by the plantations for fuel wood outside the forest area are concerned the State Government is directed to obtain within four weeks a report from TANTEA as was done in the case of shade trees, and the further action for felling them will be as per that report. Meanwhile eucalyptus and wattle trees in such area may be felled by them for their own use as permitted by the statutory committee.
- c) The State Government is directed to ascertain and identify those areas of the plantation which are a 'forest' and are not in active use as a plantation. No felling of any trees is however to be permitted in these areas, and sub-paras (b) and (c) above will not apply to such areas.
- d) There will be no further expansion of the plantations in a manner so as to involves encroachment up in (by way of clearing or otherwise) of "forests"

- 5. As far as the trees already out prior to the interim orders of this court dated December 11, 1995 are concerned, the same may be permitted to be removed provided they were not so felled from Jammu land. The State Government would verify these trees and mark then suitably to ensure that this order is duly complied with. For the present his is being permitted as a one time measure.
- 6. In so far as felling of any trees in Jammu lands is concerned (whether in plantations or others), the ban on felling will operate subject to any order made in the Civil Appeal Nos.367 to 375 of 1977 in C.A. Nos.1344-45 of 1976. After the order is made in these Civil Appeals on the I. As. Pending therein, if necessary this aspect may be re-examined.
- 7. This order is to operate and to be implemented, notwithstanding any order at variance, made or which may be made by any Government or any authority tribunal or court, including the High Court.

The earlier order made in these matters shall be read modified wherever necessary to this extent. This order is to continue, until further order. This order will operate and be complied with by all concerned. Notwithstanding any order at variance, made or which may be made hereafter, by any authority, including the Central of any State Government or any court (including the Court) or Tribunal.

We also direct that notwithstanding the closure of any saw mills or other wood-based industry pursuant to this order the workers employed in such units will continue to this order the workers employed in such units will continue to be paid their full emoluments due and shall not be retrenched or remove from service for this reason.

We are informed that the Railway authorities are still using wooden sleepers for lying tracks. The Ministry of Railway file an affidavit giving full particulars in this regard including the extent wood consumed by them, the source of supply of wood and the steps taken by them to find alternatives to the use of wood.

I.A. Nos.7,9,10,11,12,13 and 14 in writ petition (Civil) No.202 of 1995 and I.A. Nos.1,2,3,4,5,6,7,8 & 10 in writ Petition (Civil) No. 171 of 1996 are disposed of accordingly.

List the matter on February 25, 1997 as part-heard for further hearing.

	• • • • • • • • • • • • • • • • • • • •
(J.S.Verma)	
	(R.N. Kirpal)
New Delhi:	
December 12, 1996.	

Appendix No.- L

IN THE HIGH COURT OF HIMACHAL PRADESH SHIMLA

Cr. Appeal No. 567/2000

Date of Decision :14th November, 2007.

State of H.P.Appellant

Versus:

Om PrakashRespondent

Coram

The Hon'ble Mr. Justice Sanjay Karol. Judge.

Whether approved for judgement?1

For the appellant: Mr. Ashok Chaudhary, Addl. Advocate General.

For Respondent Mr. Ajay Kochar, Advocate.

Sanjay Karol, J.

The present appeal arises out of the judgment dated 12th May, 2000 passed by Sub Division Judicial Magistrate, Rampur Bushahr Shimla, H.P. in Criminal Case No. 127-3 of 1999 titled as State of H.P. Vs Om Prakash acquitting the accused of the charged offence under Section 33 of the Indian Forest Act. (herein referred to as the Act).

A complaint Ext. PW-4/B was filed by the Range Forest Officer, Kumarsain Range in the Court of Additional Chief Judicial Magistrate, Rampur Bushahr, District Shimla alleging that seven trees (class-I, one tree and class-V, six trees) were found by Daulat Ram-Forest Guard to have been illicitly felled from Un-demarcated Protected Forest (UPF), Tipper which fell within his jurisdiction. The damage reportExt.PW-1/A was prepared and the accused refused to sign the same for having admitted the guilt. Cognizance of the complaint was taken and notice of accusation was put to the accused for the commission of an offence under Section 33 for the Indian Forest Act. The accused did not plead guilt and claimed trial.

In order to prove its case, the prosecution examined as many as six witnesses and the statement of the accused Section 313 Cr. P.C. was also recorded. As per the defense of the accused he had made a complaint against the forest guard and therefore has been falsely implicated in the present case.

The court below acquitted the accused for the reason that there was no eye witness who had seen the accused felling the trees; the seizure memo was not prepared on the spot; as per the version of PW-2 the accused had only cut small branches of a fallen tree. The court further held that the damage report could not be proved by the prosecution as the attesting witness did not support the case of the prosecution.

Daulat Ram (PW-1), Chander Sain (PW-2), Sat Prakash (PW-3), P.S. Verma (PW-4), Bhagwan Dass (PW-5) and Jalmi Ram (PW-6) are the prosecution witnesses.

Damage report (Ext.PW-1/A) issued by PW-2 and signed by PW-3 was verified PW-5. Sat Prakash (PW-3) has not supported the case of the prosecution as he was declared hostile and in his cross-examination nothing has come out which would show the complicity of the accused with the commission of the crime. The dame report is not proved. That apart there is no recovery of any property and nothing was seizing or produced in the court. None of the witness have disposed that they saw the accused fell the trees in relation to which the damage report was prepared.

The complaint has been filed for violation of the provision of Section 33 of the Indian Forest Act, 1927 (herein referred of the Indian Forest Act). As per Section 30 the State Government is necessarily required to issued a notification declaring

the protected forest area to be a reserved forest. In the present case two notifications issued by the Government dated 25th February, 1952 mark-A &B and another notification dated 13th November, 1963 mark-C have been placed o record by the prosecuting Agency. The said notifications have not been proved in accordance with the provisions of Section 78 of the Indian Evidence Act. No doubt these notifications are public documents but none useless the same were required to be proved in accordance with the provisions of Section 78 of the Indian Evidence Act.

In State of Himachal Pradesh Vs. Ami Chand 1992 (2) Sim. L.C. 169, this Court has held as under:

"No doubt, copy of notification has been produced but it has not been produced in accordance with law. Section 78 of the Evidence Act deals with proof of other official documents. There is no gainsaying the fact that notification of the State Government in any of its department is a public document and it can be proved by the production of the records of the department or if its copy duly certified by the Head of the Department accordingly is proved in evidence. In the instant case, neither the notification has been proved nor its duly certified copy as envisaged under Section 78 of the Evidence Act has been produced or proved on record."

It is not the case of the prosecution that the provisions of Sections 30 and 31 of the Act have been complied with. The notifications are neither certified nor proved by examining a competent person. They were simply tendered in evidence. Further, a careful perusal of the said notifications do not indicate that Tipper the forest in question from where the trees were allegedly felled had been notified as protected/reserved forest under the provisions of Sections 29,30 and 32 of the Act. The accused has been charged for an offence under Section 28 to 30 of the Act no conviction under Section 33 of the Act can take place.

In view of the aforesaid observation, it cannot be said that the accused has violated the provisions of Section 33 of the Act. The court below has correctly appreciated the material on record and arrived at its conclusion. I see no reason to interfere with the same. The appeal is accordingly dismissed. The bail bonds are discharged.

Sd/-(Sanjay Karol), Judge.

November 14, 2007

Appendix No.- LI

T.N. Godavarman Thirumulkpad

V.

Union of India

A.S. ANAND C.J., AND B.N. KIRPAL, J.

WP(C) No. 202/95 with WP(C) No. 171/96

Decided on 15-01-1998

Environment Awareness Forum

V.

State of J&K

North Eastern States- Transportation of Timber outside the State- Not feasible- Ban on neither Timber Trade- Neither Feasible nor desirable in view of dependence of local people- Number to be regulated according to sustainability.

Saw mills to be relocated in specified industrial zones- Industrial requirement have to be subordinated to maintenance of ecology and bona fide local needs- No fresh felling in Government, District councils and Regional Councils- Fool proof institutional arrangements to be put in place under supervision of North- Eastern Council- Satellite office of Forest Survey of India to be set up at shillong.

Disposal of felled timber- Report of High Powered Committee considered- Directions issued- Pricing of timber-Existing royalty to be revised upwardly – Licensing – given to wood-based industries suspended – Wood-based industries cleared by High Powered Committee to shift to industrial estates – Complete moratorium on issue of new licenses for wood-based industries – Number of wood-based industries to determined on quantity of timber that can be sustain ably harvested.

Forest Protection - Action Plan for intensive patrolling to be prepared by PCCF –Report to be submitted to Central Government – State Government to provide all facilities to strictly enforce forest protection measures – Chief Secretary to review the same every six month.

Scientific Management of Forest - Working Plans for all Forest Divisions shall be prepared by State Government and approved.

District Regional and Village Councils working schemes specified.

Ecologically sensitive area – States to identify in consultation with **ICFRE**, **WII**, **NERIST**, **NEHU** and **NGO**s - Areas to be totally excluded from exploitation – Minimum extent to be 10% of total forest area in the State.

Action against Officials – State Governments to identify forest divisions where significant illegal felling have taken place – Initiation of disciplinary/criminal proceedings against guilty Timber Extraction – Except in private plantations – To be done only by State agencies.

Local Laws and Customs relating to forest – Concerned State Government to apply for modification of Court's order.

Arunachal Pradesh – Permit System abolished.

Proceeds from seized timber to be shared between State Government and Tribal Populations.

Wild life and Biodiversity – States to ensure sufficient budgetary provisions.

Ministry of Environmental Forest to have liberty in issuing suitable directions consisting with order.

Clarification – Term State Government to include District Councils".

ORDER

Learned Attorney General submits that the perception of the Ministry of Environment and Forests is as under:

1. It has been estimated by the HPC that about 1.20 lakhs cubic meters of illicitly felled seized timber, belonging to the State Governments is lying in the forests and depots for varying periods of time between 1 to 2 years and is thereby getting

degraded on account of decay and rotting of the wood. It is necessary to dispose it off at the earliest to minimize any further loss in it monetary value. There is, in addition, considerable quantity of Timber claimed by the private industry and local people.

List the matter on 20th January, 1998 before a Bench consisting of Hon'ble Dr. justice A.S. Anand, Hon'ble Mr. justice B.N. Kirpal and Hon'ble Mr. justice V.S. Khare.

In view of the approaching monsoon season (April 98) all such timber needs to be disposed off with urgency to save further loss in quality, as also in value, albeit with, proper checks and balances.

North-Eastern States

- 2. Given the weak infrastructure in the north-Eastern region, it does not seem feasible to transport such huge quantities of timber for auction in markets outside the region in a short time. Moreover, there would be uncertainty of the response in timber markets far away from the source of timber which has been subject to elements of degradation in varying degrees. There is also the likelihood of local resentment, in an otherwise sensitive3 area, it all such material is removed from the region without processing and value addition, which could be conceived as creating an adverse effect on the region's economy.
- 3. Even though the proliferation of wood-based industries has been the main cause of degradation of forests in the North-Eastern States, considering the extent of forests (64% of the geographical area) and the dependence of the local people on completely either the timber trade or running of the wood-based industries. However, their numbers and capacities were to be regulated *qua* the sustainable availability of forest produce and they are also required to be relocated in specified industrial zones. Moreover, the industrial requirements have to be subordinated to the maintenance of environment and ecology as well as bona fide local needs.
- 4. There shall be no fresh felling in the forests belonging to the Government, District and Regional Councils till the disposal of their existing stocks of legal and illegal timber.

5. In view of the multi-dimensional issued impinging upon forest protection, foolproof institutional arrangements need to be put in place, and made functional under the strict supervision of the North-East Council NEC). Technical back stopping in the forestry matter will be provided by MoEF by opening a separate Cell in the Ministry under an officer of the rank of CCF and starting a satellite office of the Forest Survey of India at Shillong.

We appreciate the perception of MoEF as reflected by the learned Attorney General.

We have heard the *Amicus Curiae*, the learned Attorney General and learned counsel for North Eastern States. In view of the report of the High Power Committee and taking into account the factors which require an order to be made by the Court for disposal of the felled timber and ancillary matters which are lying in the North-Eastern states, we consider it appropriate to make the following order:-

- 1. Disposal of timber shall commence only after the concerned Principal Chief Conservator of Forests irrevocably certifies that investigations of all felled timber in the State has been completed.
- 2. As a first measure all inventories of timber, including seized timber lying in the forest should be immediately transported to specified forest depots.
- 3. All illegal/ illicit timber found in possession of an offender or abandoned in the forest shall be confiscated to the State Government and shall be disposed off in accordance with the procedure to be adopted for disposal of Government timber.
- 4. Out of the seized timber, logs found suitable for manufacture of veneer and plywood shall be processed by the State Governments within their own factories and by hiring such facilities. The finished product can be marketed freely.
- 5. The remaining timber belonging to Government and District Councils shall be first offered for sale to Government Departments for their *bona fide* official use and the rest shall be sold in public auction or through sealed tenders after fixing floor price by an Expert Committee with a representative from the MoEF. Private timber owners whose stocks have been cleared by HPC shall have the option of selling the timber either in the auctions organized by the State Forest Departments/Forest Development Corporations or directly.

- 6. The State Governments shall formally notify industrial estates for locating the wood-based industries units in consultation with the Ministry of Environment and Forests.
- 7. Timber as per inventory cleared by HPC may be allowed to:
- (a) be converted/utilized if the unit is located within the notified industrial estate. As the relocation in proposed industrial estates may take some time, existing units with only legal stocks may convert this timber, as one time exception, notwithstanding anything contained in para 12 hereunder, till such stocks last subject to the maximum period as per norms prescribed by the High Power Committee (vide their III report) or six months whichever is less. Any stock remaining thereafter shall rest in the State Government. However, fresh trees/timber will be allotted to these units only when they start functioning within the designated industrial estates. The territorial Deputy Conservator of Forests/Divisional Forest Officer shall be responsible for ensuring that such units process the legal stocks only and will closely monitor the various transit permits (inward and outward) and maintenance of the prescribed records. All such records shall be countersigned (with date) by an officer not less than the rank of an Assistant Conservator of Forests.
- (b) Allowed to be sold to other units which are located in these industrial estates subject to the condition that such transactions are routed through an authority notified/ constituted by the Principal Chief Conservator of Forests.
- (c) The State Governments shall ensure disposal of illegal timber before permitting the conversion/ disposal of legal/authorized timber available with the wood-based industries.
- 8. Transportation of auctioned timber (as well as legal timber) including sawn timber outside the North-Eastern Region shall only be done through railways under the strict supervision of the Forest Department. The Railway Board shall give priority for providing rakes/ wagons for such transportation.
- 9. Modalities for transportation of timber/ timber products and alternative modes in case of difficulties in transportation by Railways, will be worked out by the State Governments in concurrence of the Ministry of Environment and Forests.

10. Existing inventoried stock of timber originating from plantations in private and community holdings in the States of Meghalaya, Mizoram, Tripura, Manipur and Nagaland may be disposed of by their owners under the relevant State laws and rules. In States where such laws and rules do not exist, the necessary laws and rules may be framed within six months.

PRICING OF TIMBER

11. The State Governments shall ensure that timber / forest produce is supplied to industries including Government Undertakings, at full market rate. The existing royalty shall be reviewed and revised upwardly by a Committee constituted under the Chairmanship of Principal Chief Conservator of Forests with representatives from the concerned Departments and shall also include a representative of Ministry of Environment and Forest. The prices of timber for which royalty has not been realized in full shall also be reviewed by this Committee and the concerned industry shall be required to pay the revised price or the royalty (including surcharge, fee etc.) whichever is higher after deducting the part royalty already paid.

LICENSING

- 12. Licensing given to all wood-based industries shall stand suspended
- 13. Wood-based industries which have been cleared by the High Power Committee without any penalty shall have the option to shift to industrial estates which shall be identified by the States within 45 days and developed within six months thereafter.
- 14. Units which have been penalized because they were found to exceed normal recovery norms, but were within 15% of the said norms will have right to approach the High Power Committee on or before 9th February, 1998. The High Power Committee shall examine all relevant material in particular the income tax and excise records for the proceeding three years. The High Power Committee shall dispose of all such applications within 45 days thereafter, and such mills may be granted license if the High Power Committee find that it is not against public interest so to do.
- 15. Units which have not furnished details/information to the High Power Committee so far or which have not been cleared by the High Power Committee shall not be granted any license and the stocks in their custody if any, shall be confiscated to

the State Government. In case of leased mills belonging to corporations / trusts / cooperative societies owned / controlled / managed by the State Government and where the lessees have been penalized by the High Power Committee, the leases shall stand revoked. Such mills shall, however, be eligible for re licensing subject to the condition that these mills are not leased out in future except to a entity fully owned by the Government.

- 16. Units who do not want to shift to the designated industrial estates shall be allowed to wind up as per law.
- 17. Henceforth, licenses of units shall be renewed annually only in those cases where no irregularity is detected.
- 18. There shall be a complete moratorium on the issue of new licenses by the State Governments or any other authority for the establishment of any new wood-based industry for the next five years after which the situation shall be reviewed with the concurrence of Ministry of Environment and Forests.
- 19. Number of wood-based industries shall be determined strictly within the quantity of timber which can be felled annually on sustainable basis as determined by the approved working plans from time to time. If it is found that units after relocation in industrial estate have excess capacity then their capacities shall be reduced pro rata to remain within the sustainable levels.

FOREST PROTECTION

- 20. An action plan shall be prepared by the Principal Chief Conservator of Forests / Chief Forest Officer for intensive patrolling and other necessary protective measure to be undertaken in identified vulnerable areas and quarterly report shall be submitted to the Central Government for approval. The approved plan together with the modifications, if any, shall be acted upon.
- 21. To ensure protection of the forest wealth the forest officers in the North-Eastern States may be empowered with authority to investigate prosecute and confiscate on the lines of the powers conferred on the forest officers in many other States in the country.

22. The State Governments shall be responsible for providing all facilities including security and police force to strictly enforce forest protection measures to stop illicit felling, removal and utilizations of such timber. The Chief Secretary shall review the various matters concerning forest protection and development in his State at least once every six months with senior forest officers up to the rank of Conservator of Forests, Regional Chief Conservator of Forests of MoEF shall be invited to all such meetings.

Scientific Management of Forests.

- 23. Working Plans for all forest divisions shall be prepared by the State Governments and got approved from the Government of India. Forest working shall be carried out strictly in accordance with the approved prescriptions of the working plans. The working plans should be prepared within a period of two years. During the interregnum the forests shall be worked according to an annual felling programme approved by the MoEF which shall be incorporated in the concerned working plan. In case a working plan is not prepared within this time frame, future felling will remain suspended till the regular working plan is prepared and get approved.
- 24. The forests under the District, Regional and Village Councils shall be worked in accordance with working schemes which shall specify both the programme for regeneration and harvesting and whose period shall not be less than 5 years.
- 25. The maximum permissible annual yield in the ad interim measures suggested above, shall not exceed the annual harvestable yield determined by Ministry of Environment and Forests. *The plantations schemes raised on private and community holdings shall be excluded from these requirements but shall be regulated under respective State rules and regulations*.
- 26. The States shall identify ecologically sensitive areas in consultation with lading institutions like the Indian Council of Forestry Research and Education Wild Life Institute of India, North Eastern Hill University, North Eastern Regional Institute of Science and Technology, leading NGOs, etc. and ensure that such areas are totally excluded from any kind of exploitation: The minimum extent of such areas shall be 10% of the total forest area in the State.

ACTION AGAINST OFFICIALS

- 27. The State Government shall identify within 15 days all those forest divisions where significant illegal felling has taken place and initiate disciplinary / criminal proceedings against those found responsible. The first Action Taken Report (ATR) in this regard shall be followed by quarterly reports (Qrs.) till the culmination of the matter.
- 28. Timber extracting in forests irrespective of ownership except in private plantations, shall be carried out by a State agency only. The States shall endeavour to adopt pattern obtaining in the State of Himachal Pradesh as described in para 2,5,3 of the Rajamani Committee Report.

If there be any local laws/customs relating to the forest in any State, the concerned State Government may apply to this Court for the needed modification, if any, with alternative proposal.

- 29. The penalties levied on the wood-based industries as ordered by the High Power Committee shall constitute the revolving fund to meet the expenses involved in collection and transportation of seized illegal timber. These can be augmented by utilizing the funds generated by the initial sales of illegal timber already available in the forest depots.
- 30. Each State shall constitute a State level Expert Committee for matters concerning the preparation of Working plans, their implementation, development of Industrial estates, shifting of industrial units to these estates, rules and regulations regarding the grant and renewal of licenses to wood-based industry and other ancillary matters, under the chairmanship of Principal Chief Conservator of Forests and with a nominee of Ministry of environment and Forests as one of its members. Any decision of this Committee which is not acceptable to the State Government shall be referred to the Central Government.
- 31. The existing permit system in Arunachal Pradesh shall stand abolished. The State Government may provide financial assistance in each or kind in the form of timber only for the Bona fide use of the local tribals alone. Such concessional timber shall not be bartered or sold. Felling of trees for such purpose shall be carried out only by a Government agency.

- 32. The total sale proceeds from the sale of seized timber, as well as timber products manufactured and disposed by the State Government (Vide para-1) and penalties would be credited to the State Revenues. *Out of this, the State shall utilize one half of the amount for raising forest plantations by local tribal population and as assistance to the tribals. The remaining one half of the total sale proceeds, after deduction of the expense there from, would go to the State coffers for other developmental activities in the State.*
- 33. The States shall ensure that sufficient budgetary provisions are made for the preservation of biodiversity and protection of wild life.
- 34. To ensure that timber / forest produce smuggled across the border may not be used as a cover for trade in illegal timber, it is directed that all such timber seized by customs/Border Security Force should not be redeemed in favour of individuals who are smuggling it but should be confiscated and handed over to the concerned State Forest Department along with offenders. Vehicles, tools and implements for prosecution under the relevant acts.
- 35. For the proper and effective implementation of these orders, Ministry of Environment and Forests will have the liberty to issue suitable directions consistent with this order.
- 36. Action taken report be filed by each State Government and the Ministry of Environment and Forest every two months.
- 37. Liberty to apply for modification / clarification in case of need. (Note: In this order the term "State Government" would include District Council also except where the context implies otherwise.

Appendix No.- LII

T.N. Godavaraman Thirumulkpad

V.

Union of India

B.N. KIRPAL, RUMA PAL & B.N. AGRAWAL, JJ.

Decided on 12-05-2001

North-Eastern States – Partial modification of order dated 23-4-2001 _ Movement of timber and timber products including Sawn timber, Veneer & plywood outside Northeast shall be permitted if sourced from HPC cleared wood-based units situated in approved industrial estates - Mizoram exempted.

Clarification – Working plan/schemes shall be needed for felling from any non-Government forest area including lands which are required to be treated as "Forest" as per 12-12-1996 order – No felling to be done unless sufficient budgetary provisions exist for regeneration of such forest – For non-forest areas and private plantation detailed guidelines to be framed by the State Government and approved by MoEF – No felling till guidelines becomes effective – Transit passes printed on water marked papers shall be used for transportation of timber – Chief Secretaries of North-Eastern States to review action against forest officials – Constitution of Empowered Committees for the States of Madhya Pradesh and Chattisgarh.

ORDER

After hearing the counsel of the parties, in partial modification of our earlier order dated 23rd April, 2001, we direct as follows:

The movement permitted hereunder shall be on the indent of the District Forest Officer (DFO) or any other authorized Forest Officer on an application being made by the registered timber transporter. In case any illegal timber is found to be transported, it will be open to take action against the concerned forest officials under whose supervision and control

tampered with, the Railways can also be proceeded against. The responsibility of the above two is in addition to the primary responsibility of the registered timber transporter on whose application the indent was made.

Movement of timber and timber products including sawn timber, veneer and plywood outside North-East shall be permitted only if sourced from or processed in High Powered Committee cleared wood-based units situated inside approved Round and hand sawn timber, save in cases where specific approval is accorded by the High Powered Committee / Ministry of Environment & Forests shall not be allowed to be transported outside North-East except in the case of Mizoram. Movement of timber and timber products for Mizoram shall be regulated as per guidelines prescribed by the Special Investigating Team.

Felling of trees from forests shall be only in accordance with working plans schemes or felling schemes approved by Ministry of Environment & Forest as per this court's Order dated 15-01-1998. It is again clarified that such working plans/schemes shall also be needed for felling of trees from any non-Government forest area including the lands which are required to be treated as "forest" as per this Court's order dated 12-12-1998, wile implementing the working plans /schemes approved by the Central Government, State Government or the concerned authority, as the case may be, shall ensure that no felling is done unless and until sufficient financial provisions exist for regeneration of such areas as per this Court's directions dated 22-09-2000. For felling of trees from non-forest areas, including in respect of plantations on non-forest areas detailed guidelines/rules shall be framed by the concerned State Governments which shall come into effect after the same are concurred with modification, if any, by the Ministry of Environment & Forests. The guidelines / rules shall also include provision for penalties and mode of disposal in respect of any felling done in violation of such guidelines/rules. Till such guidelines / rules become effective no felling from any area other than under approved working plans /schemes or felling schemes shall be permitted. The schemes, guidelines / rules which shall be framed by the concerned State Government within three months and decision thereon shall be taken by the Ministry of Environment & Forests within one month of the date of receipt.

1. Clearances given by the High Powered Committee to the inventory of the timber, other than the timber owned by the Government or Government owned Forest corporations, which have not so far been transported to the notified industrial estates, stand confiscated to the State Government free from all liabilities.

All concerned State Governments and railways shall strictly follow the guidelines issued by the Special Investigating Team. The High Powered Committee Special Investigating Team or any other authority constituted under the directions of this Court are empowered to issue orders for confiscation of any vehicle including trucks and boats used for movement of any timber or timber products which has been or was being used for transportation of timber/ timber products in violation of any orders of this Court. The High Powered Committee, Special Investigating Team or any other authority constituted under the directions of this Court. The State Government and other concerned authorities shall provide all necessary assistance sought for this purpose.

- 2. The Special Investigating team shall from time to time prescribe the maximum number of railway wagons for each of the approved loading stations which may be allowed for each quarter for transportation of timber including sawn timber. The railway shall ensure that in no case the limits are exceeded.
- 3. Periodic reconciliation of records regarding receipt, conversion disposal and movement of timber/timber products by various wood-based units shall be carried out for which detailed guidelines shall be issued by Ministry of Environment & Forests after consulting the State Governments and Railways within two months. It shall be ensured by the concerned state Governments as well as the Railways that these guidelines are strictly adhered to.
- 4. Transit passes printed only on water-marked papers shall be used for transportation of timber/ timber products with effect from a date to be fixed by Ministry of Environment & Forest which shall not be later than 1st December, 2001.
- 5. In respect of plywood and veneer units, detailed guidelines shall be issued by Ministry of Environment & Forests for regulating maintenance and reconciliation of records by the unit as well as the State Government in respect of receipt of raw

materials such as timber, veneer etc., conversion in to finished products, disposal and movement. The guidelines shall be issued within three months.

- 6. The High Powered Committee, Special Investigating Team or any authority constituted under the orders of the this Court shall be at liberty to issue directions for detention, verification, seizure, confiscation, disposal etc. of timber or timber products including that in transit. Such directions issued to the registered timber transporter, consignee, owner of the consignee, transporter, State Government, railways or any other authority shall be binding on them.
- 7. The question of demurrage / warfare claimed by Railways in respect of goods detained shall be decided in such manner as this Court may order. Pending such decision, the Special Investigating Team will be at liberty to dispose of the confiscated goods and keep the proceeds in a separate bank account after payment of direct expenses and will abide by the orders of this Court for its utilization. The Railways will not object to the goods being lifted without payment of demurrage or warfare in view of this arrangement.
- 8. The Chief Secretaries of North-Eastern States shall immediately review the action taken against official and others found responsible for significant illegal felling as per pare 27 of this Court's order 15-01-1998 and those involved in movement of illegal timber seized / confiscated by the Special Investigating Team. Wherever it is found that the action taken requires to be reviewed, the concerned State Government shall take appropriate steps be it in the nature of Departmental proceedings or criminal proceedings as may be necessary to assure this Court that the States are serious in creating an environment of deterrence against illegal felling of trees. The Railways shall also review the action taken and take corrective measures required. An action taken report shall be submitted to the this Court through an affidavit by the concerned Chief Secretaries within sixty days which *inter alia* should include their observations about adequacy of the action now taken against the concerned authorities the proceedings for confiscation of trucks and other vehicles used for movement of illegal timber, especially where such movement has taken place using fake/tampered /expired transit passes, may also be reviewed.

Such review shall also be done by the Chief Secretary while taking half yearly review meeting as per pare 22 of this Court's order dated 15-01-1998.

9. State Meghalaya wanted that the natural forests including artificially generated pine plantations on private holdings in Meghalaya may be allowed to be harvested in accordance with the time honoured customary and traditional rights subject to rules and regulations framed by the concerned autonomous District councils under the provisions of their Management and Control of Forest Act, 1958, read with the provisions of the Meghalaya Forest (Removal of Timber), Regulation Act, 1981, and prescribed norms as per duly approved working schemes. Ministry of Environment & Forests will give its response to this request at the next date of the hearing.

Directions with regard to setting up of Nodal Agencies in the States of M.P. and Chhattisgarh to dispose of the interlocutory applications with regard to overseeing the working of the Forest.

After hearing the counsel for the parties and pending the constitution of a statutory agency under section 3 of the Environment (Protection) Act, we constitute Empowered Committee each for the States of Madhya Pradesh and Chhattisgarh consisting of representatives of the respective States on the one hand and the representatives of the Ministry of Environment & Forests (MoEF) on the other. These Committees will consider such of the applications which are pending in this Court or future applications which the respective Advocates General think can be regarded as re presentations to be decided by the respective Empowered Committees the decisions being in conformity and in accordance with the orders passed by this Court from time to time.

For the States of Madhya Pradesh and Chhattisgarh, the respective Empowered Committees will be headed, by a person nominated, within one week, by the Secretary, MoEF, Government of India, in consultation with the *amicus curiae* and the Advocates General of the respective States. The Members of the Empowered Committees would be two persons nominated by the Chief Ministers of the respective States and two persons nominated by the Secretary, MoEF. At least one of the

nominees of the States as well as of the Union of India shall be non-official and preferably a reputed N.G.O. This nomination should be completed within one week from today.

The Empowered Committees" remuneration with regard to the Members of the Committees will be considered on the next date of hearing. The meeting of these Empowered Committees will be held in the respective States Capitals or at such other places which the Chairman may decide. The first meeting of the Empowered Committees in the respective States would be held on or before 31st May, 2001.

The Empowered Committees will consider and if possible dispose of the applications which would be treated as representations in conformity with the orders passed by this Court. In case any modification of an order becomes necessary, the parties will be at liberty to approach this Court even during this Summer Vacation.

The Empowered Committees should submit their reports by 31st July, 2001 on the work done by them.

The procedure for deciding the applications as representations will be decided by the Empowered Committees which will give a reasonable opportunity to the applicants of being heard.

Appendix No.- LIII

IN THE HIGH COURT OF HIMACHAL PRADESH, SHIMLA

LPA N. 152 of 07 with LPA Nos. 1, 2 of 2008 & CWP Nos. 1661 of 2007 and 11 of 2008.

Judgment reserved on: 26.02.20	008
Date of decision: 28 th May, 200	08
LPA No.152/2007	
H.P. State Forest Corporation I	td. Appellant.
Ve	rsus
Ram Lal and others.	Respondents
LPA No. 1/2008	
Suresh Kumar and others.	Appellants.
Ve	rsus
State of H.P. and others.	Respondents
LPA No. 2/2008	
State of H.P. and another.	Appellant.
	rsus
Ram Lal and others.	Respondents
CWD N 1661 52007	
CWP No. 1661 of 2007	
Rumel Singh	Petitioner.
	rsus Person dente
State of H.P. and another.	Respondents
CWP No. 11 of 2008	D. CC
Sita Ram and others.	Petitioner.
	rsus December de méte
State of H.P. and another.	Respondents
Coram	

The Hon'ble Mr. Justice Jagdish Bhalla, CJ. The Hon'ble Mr. Justice Deepak Gupta, J.

Whether approved for reporting? 1 Yes.

LPA No. 152/2007

For the appellant: Mr.Jyotsana Rewal Dua, Advocate

For respondents No. 9 & 10: Mr. R.K. Bawa, Advocate General with Mr. J.K. Verma,

Dy. Advocate General

For the applicant: Mr. Ajay Mohan Goel, Advocate

LPA No. 1/2008

For the appellant: Mr. Jyotsana Rewal Dua, Advocate

For respondents No. 1 to 3: Mr. R.K. Bawa, Advocate General with Mr. J.K. Verma, Dy.

Advocate General

For respondents No 4: Mr. Baldev Singh, Advocate

Amicus Curiae. Vinay Kuthiala, Advocate

LPA No. 2/2008

For the appellant: Mr. R.K. Bawa, Advocate General

with Mr. J.K.Verma, Dy. Advocate General.

For respondents No. 1.: Mr. Baldev Singh, Advocate

CWP No. 1661/2007 For the petitioner: Mr. Deepak Kaushal, Advocate.

For respondents. Mr. R.K. Bawa, Advocate General

with Mr. J.K.Verma, Dy. Advocate General.

CWP No. 11/2008

For the petitioner: Mr. Ajay Mohan Goel, Advocate.
For respondents. Mr. R.K. Bawa, Advocate General

with Mr. J.K. Verma, Dy. Advocate General.

Per Deepak Gupta.J.

This group of cases is being disposed of by a common judgment as similar questions of law and facts are involved in the same.

1. Whether the reporters of the local papers may be allowed to see the Judgment?

Yes.

A learned Single Judge of this Court decided CWP 1358 of 2001 vide judgment dated 23.11.2007 whereby he has totally banned the cutting and felling of trees in the State of Himachal Pradesh relying on the various order passed by the Apex Court in T.N. Godavarman's WP(C) No. 202 of 1995. The learned single Judge after discussing the various orders of the Apex Court issued the following directions:-

- i) the order passed by the Hon'ble Supreme Court on 12.12.1996 in T.N.Godavarman's case is in operation and consequently there cannot be any green felling in the entire State of H.P. either in Government owned forest or private as well as removal of fallen trees, diseased trees and try standing timber;
- the State has failed to obtain appropriate orders from the Hon'ble Supreme Court on the recommendations of the Expert Committee dated 15th February, 1997 placed by the State Government by way of affidavit dated 21.2.1997 in Godavaraman's case;
- iii) the State has further failed to obtain orders from the Hon'ble Supreme Court even after the filling of the affidavit on 2^{nd} May, 1997 as admitted by the Principal Secretary (Forest) in his affidavit dated 25.5.1997;
- iv) the Hon'ble Supreme Court has directed on 14th February, 2002 the State Government not to give effect to any notification for the commencement of silviculture operation;
- v) the State has not obtained any orders from the Hon'ble Supreme Court on the basis of the affidavit filed it pursuant to the order dated 14.2.200 as stated by the State;
- vi) the State Government has granted permission for felling of green trees merely on the basis for recommendations of the Expert Committee dated 15th February, 1997 as admitted by the Secretary (Forest) to the Government of H.P. in his affidavit dated 25.5.1997; and
- vii) There cannot be any felling or removal of khair trees in the State of H.P. till necessary clarifications sought by the parties from the Hon'ble Supreme Court with regard to the definition of the word 'forest' grown on private lands.

These directions issued by the learned Singh Judge have been challenged before us in LPA No. 152 of 07, LPA No. 1 of 2008 and LPA No. 2 of 2008. The petitioners I CWP No. 1661 of 2007 and CWP No. 11 of 2008have also challenged the correctness of these directions. According to the petitioners the orders of the Apex Court in T.N. Godaveman's case were only in respect of the forest land and could not be applied to all land in the State of Himachal Pradesh. It is further submitted that the reports of the Expert Committees did not require to be approved by the Supreme Court. The stand of the State and other appellants is that once the Expert Committees submitted their reports no further orders were required from the Supreme Court. It is contended that copies of the reports were filed before the Apex Court only to apprise it of the fact that the Committees had submitted the reports consequent to the directions of the learned Single Judge prohibiting the removal of fallen trees, disease trees and dry standing timber is against the orders passed by the Apex Court. It is further prayed that the projects which have been approved by the Central Government have also come to a standstill due to the orders of the learned Single Judge and therefore the entire development in the State of Himachal Pradesh has come to a grinding halt. Another ground raised is that the order of the Apex Court were not applicable to the Khair trees, especially the Khair trees grown on non-forest land.

To understand and appreciate the contentions of the parties, it would be apposite to quote certain orders of the Apex Court in the T.N. Godaveman's case. The main order in this case was passed on 12.12.1996. The Apex Court in the said order widened the meaning given to the word 'forest' in the Forest Conservation Act and held the same should e read in the following terms:

"It has emerged at the hearing, that there is a misconception in certain quarters about the true scope of the Forest Conservation Act, 1980 (for short the 'Act') and the meaning of the word "forest" used therein. There is also a resulting misconception about the need of certain activities in the forest area which are more often of a commercial nature. It is necessary to clarify that position.

The Forest Conservation Act, 1980 was enacted with a view to check further deforestation which ultimately results in ecological imbalance;

and therefore, the provisions made therein for the conservation of forests and for matters connected there with, must apply to all forests irrespective of the nature of ownership or classification thereof. The word "forest: must be understood according to its dictionary meaning. This description cover all statutorily meaning. Forests, whether designated as reserved, protected or otherwise for the purpose of Section 2(1) of the Forest Conservation Act. The term "forest land". As understood in the dictionary sense, but also any area recorded as forest in the Government record irrespective of the ownership. This is how it has to be understood for the purpose of Section 2 of the Act. The provisions enacted in the Forest Conservation Act. 1980 for the conservation of forests and the matters connected therewith must apply clearly to all forests so understood irrespective of the ownership or classification thereof."

Thereafter the Apex Court issued directions some of which were general in nature and some specific to certain States. For the purpose of deciding the present dispute the relevant directions which are required to be considered are the following:"I GENERAL:

- 1. In view of the meaning of the word "forest" in the Act, it is obvious that prior approval of the Central Government is required for any non-forest activity within the area of any "forest". In accordance with Section 2 of the Act, all on-going activity within any forest in any State throughout the country, without the prior approval of the Central Government, must ceased forthwith. It is, therefore, clear that the running of saw mills of any kind including veneer or ply-wood mills, and mining of any mineral are non-forest purpose and are, therefore, not permissible without prior approval of the Central Government. Accordingly, any such activity is prima facie violation of the provisions of the Forest Conservation Act, 1980. Every State Government must promptly ensure total cessation of all such activities forthwith.
- 2. xxxx....xxxx....xxxx

- 3. The felling of trees in all forests is to remain suspended except in accordance with the Working Plans of the State Governments, as approved by the Central Government. In the absence of any Working plan in any particular State, such as Arunachal Pradesh, where the permit system exists, the Forest Department of the State Government or the State Forest Corporation.
- 4. xxx.....xxx
- 5. Each State Government should constitute within one month an Expert Committee to:
- (i) Identify areas which are "forest", irrespective of whether they are so notified, recognized or classified under any law, and irrespective of the ownership of the land of such forest;
- (ii) Identify areas which were earlier forests but stand degraded, denuded or cleared; and
- (iii) Identify areas covered by plantation trees belonging to the Government and those belonging to private persons.
- 6. Each State Government should within two months, file a report regarding:-
- (i) the number of saw mills, veneer and plywood mills actually operation within the State, with particulars of their real ownership;
- (ii) the licensed and actual capacity of these mills for stock and sawing;
- (iii)their proximity to the nearest forest;
- (iv)their source of timber.
- 7. Each State Government should constitute within one month, an Expert Committee to assess:
- (i) the sustainable capacity of the forests of the State qua saw mills and timber based industry;
- (ii) the number of existing saw mills which can safety be sustained in the State;
- (iii) the optimum distance from the forest, qua that State at which the saw mill should be located.
- 8. The Expert Committees so constituted should be requested to give its report within one month of being constituted.

9. Each State Government would constitute Conservator of Forests and another Senior Officer to oversee the compliance of this order and file status report.

II. FOR THE STATE OF JAMMU & KASHMIR:

XXX.....XXX

III. FOR THE SATATE OF HIMACHAL PRADESH AND THE HILL REGIONS OF THE STATES OF UTTAR PRADESH AND WEST BENGAL:

- 1. There will be no felling of trees permitted in any forest, public or private. This ban will not affect felling in any private plantation comprising of trees planned in any area which is not a 'forest'; and which has not been converted from an earlier "forest". This ban will not apply to permits granted to the right holders for their bonafide personal use in Himachal Pradesh.
- 2. In a 'forest', the State Government may either departmentally or through the State Forest Corporation remove fallen trees or fell and remove diseased or dry standing timber from areas other than those notified under Section 18 or Section 35 of the Wild Life Protection Act, 1972 or any other Act banning such felling or removal of trees.
- 3. For this purpose, the State Government is to constitute an expert Committee comprising a representative from MOEF, a representative of the State Government, two private experts of eminence and the MD of the State Forest Corporation (as Member Secretary), who will fix the qualitative and quantitative norms for the felling of fallen trees and diseased and standing timber. The State shall ensure that the trees to felled the removed are in accordance with these norms.
- 4. Felling of trees in any forest or any clearance of forest land in execution of projects shall be in strict conformity with the Forest Conservation Act, 1980 and any other laws applying thereto. Moreover, any trees so felled, and the disposal of such trees shall be done exclusively by the State Forest Corporation and no private agency is to be involved in any aspect thereof.

XXXXXXXXXXXXXXX	
-----------------	--

The earlier orders made in these matters shall be read, modified wherever necessary to this extent. This order is to continue, unit further orders. This order will operate and be complied with by all concerned, notwithstanding any order at variance, made or which may be made hereafter, by any authority, including the Central r any State Government or any court (including High Court) or Tribunal."

(Emphasis supplied)

Another order was passed by the Apex Court on 14.2.2000, relevant portion of which reads as follows:-

"Issue notice to all the respondents. I the meantime, we restrain respondents Nos 2 to 32 from ordering the removal of dead, diseased, dying or wind –fallen trees, drift wood ad grasses etc. from any National park or Game sanctuary or forest. If any order to this effect has already been passed any of the respondent-States, the operation of the same shall stand immediately stayed."

However, this portion of the order was modified on 28.2.2000 and the word Forest was ordered to be deleted.

In the same order the Apex Court had also issued specific directions in respect of the State of Himachal Pradesh in the following terms:-

"It is submitted by the amicus curiae that it has been reported in the Press that the State of the ban on felling of trees in that State. It is submitted that by order dated 12th December, 1996 of this Court of WP(c) No. 202/1995 felling of trees in any forest, public or private has been banned and this order has not been varied so far. He, therefore, submits that if there is any order issued by the State of Himachal Pradesh giving permission to the felling of trees, that would amount to contravention of this Court's order dated 12th December, 1996 and would therefore, be bad in law.

We issue notice to the State of Himachal Pradesh to file an affidavit within three weeks so as to inform the Court whether any such order has been passed. We make it clear that if any such order has been passed, the operation of the same shall remain stayed till further orders by this Court."

Pursuant to the orders dated 12.12.1996 passed by the Apex Court the State of Himachal Pradesh constituted an Expert Committee in terms of General Directions 5 and 7. The Expert Committee submitted its report. The State Government filed an affidavit before the Apex Court on 21st February, 1997, annexing therewith the copy of the report. When the report was submitted certain submissions were made. However, no order has been brought to our notice specifically pointing out that the Apex Court has either accepted or rejected this report of the Committee.

The State Government also constituted an Expert Committee in terms of the direction No. 3 in respect of the specific directions relating to the State of Himachal Pradesh and other hill regions, to fix the norms and standards for felling of fallen trees, diseased trees ad dry standing timber. The report of the Committee was filled the Apex Court on 2nd May 1997.

In response to the orders of the Apex Court dated 14.2.2000 referred to above the State of H.P. filed another affidavit which reads as follows:-

"That, after reviewing the progress of preparation of Working plans, and their consequent approval by the Central Government, the State Government on 25th November 1999 has only reiterated its intention as expressed in the earlier decision taken on 11th February, 1997 and already placed before this Hon'ble Court by the affidavit dated 2.5.1997. Neither the cabinet decision dated 11.2.1997 nor its reiteration dated 25.11.1999 have actually been implemented in deference to the pending of the above matter before this Hon'ble Court. This decision of the State Government was based on its bonafide understanding that the Hon'ble Court's interim directions of 12th December 1996 had been passed due to the concern of this Hon'ble Court about non-adherence by the State Governments to the various provisions and guidelines of the Forest (Conservation) Act, 1980. This inter alia included the working of the forests only under the Working plans approved by the Central Government. The directions clearly express the Hon'ble Court's concern regarding lack of scientific management of the forests, and require the State to not only prepare Working Plans, but to also seek approval of the Central Government before applying their prescriptions, including felling of trees. This interpretations, was further reinforced on receipt of directions of this Hon'ble Court, issued on 15 January 1998, whereby it was agai tresses that:

Working plans for all forest Divisions shall be prepared by he State Governments and got approved from the Government of India. Forest working shall be carried out strictly in accordance with the approved prescriptions of the Working Plans.

(copy of State Government decision of 25.11.1999 is enclosed as A-3.)

It is reiterated that no felling of trees has of 25.11.1999 taken by the replying State (copy of letter dated 18.2.2000 issued by State Government as stated in this Para is enclosed as A-4)."

It will be pertinent to mention that in this affidavit the State Government has clearly admitted that the working plans were required to be approved by the Central Government. According to the State, the working plan were got actually approved from the State Government. It was also stated that no felling of trees has taken place consequent to the decision dated 25.11.1999.

Some of the petitions before us are in respect of felling of Khair trees. The Supreme Court dealt with matters concerning the felling of Khair trees in the State of Jammu and Kashmir. The Court observed that the orders passed by the officials of the State of Jammu and Kashmir permitting felling of Khair trees were against the earlier orders passed by the Court. On 4th May, 1998 counsel for the State of Jammu and Kashmir was directed to give names of officials who had passed such orders. On the next date i.e. 5th May, 1998 detailed order was passed and contempt notices were issued to a number of officials of the State of Jammu and Kashmir. Thereafter the contemnor tendered their apologies and the State of Jammu and Kashmir assured the Apex Court that no felling of Khair trees from any forest or from private land would be permitted until the issue is decided by the Apex Court. No subsequent order has been brought to our notice permitting felling of Khair trees.

One of us (Deepak Gupta, J.) had dealt with the question as to whether he reports of the Committees constituted under the General Directions of the Apex Court were required to be approved by the Apex Court in CWP No. 203 of 2001, wherein it was held as follows: "Shri Kuldip Singh Kanwar has submitted that judgment in Godavarman's case (supra) will not apply in cases where a decision has already been taken by the Apex Court permitting such felling of trees. He submits that even otherwise, the land in Godavarman's case, since in the case, the land of question as per revenue record is depicted as "Ghasani" land and is not forest land. He further submits hat the recommendations of the Committee relied upon by the respondents have not been accepted by the apex Court or by the State and as such cannot be enforced.

"As the private lands be considered as forests under private ownership, it was decide that a compact block of wooded land above 5 ha. In extent will be "forest" for the purpose of forest (Conservation) Act, 1980."

According to the respondents, the land of the petitioners is about 10 hectares and is one compact block of land which is heavily wooded and as such the same falls within the definition of "forest" as recommended by the Committee. It is further submitted this report has been submitted to the Apex Court and it is under these circumstances that the State Government has not granted permission to fell trees.

After hearing learned counsel for the parties and going through the entire record, I feel that it would not be appropriate for this Court to issued any directions or give any findings in the present case. The entire dispute revolves around the interpretation to be given to the order of the apex Court. The report of the Committee has also been placed before the apex Court. In case the apex Court accepts the report of the Committee then obviously the trees cannot be permitted to be felled. There is no material on record to show whether the report has been accepted or rejected by the apex Court. The appeal arising out of contempt matter has also been dismissed by the apex Court by giving aforesaid directions. It would be out of place to mention that when the appeal arising out of contempt matter was disposed of by the apex Court apparently, the petitioners did not bring it to the notice of the apex Court that the present writ petition is pending before this Court.

In view of the fact that the whole dispute revolves around the question relating of trees which is under the active consideration of the apex Court in Godavarman's case (supra), in which case the apex Court had ordered that no Court

should allow felling of trees, it would not be appropriate for this Court to express any opinion in the matter. The remedy of the petitioners, if any, is to approach the Supreme Court on India."

As for as the report of the Expert Committees constituted under General Directions 5 and 7 of the Apex Court are concerned, we are of the considered opinion that the same were not only required to be placed before the Apex Court but the approval of the Apex Court was required before the State could act on the basis of the said reports. Not only had the Supreme Court directed that two Expert Committees should be constituted to identify the areas which are forest, etc. And also to assess the sustainable capacity of forest in respect of saw mills but the State was also required to constitute a third Committee to oversee the compliance of the orders and file status report. When the Supreme Court directed that the status report be filed it obviously meant that the Supreme Court would look into the report and pass further orders. Once status reports were filed, it was but obvious that the Supreme Court would have decided whether to accept the report of the Committee or not.

However, as far as the report of the Committee constituted under direction 3 of the directions issued specifically in relation to Himachal Pradesh is concerned, it has to be read in conjunction with the permission granted in direction-2 therein. The Apex Court in direction 2 permitted the State Government departmentally or through the Forest Corporation to remove fallen trees or fell and remove diseased trees and dry standing timber from forest areas other than those notified under the Wild Life Protection Act. The Committee was to fix the qualitative and quantitative norms for felling of fallen trees, diseased trees and dry standing timber. However, directions had been issued that the State shall ensure that the trees shall be removed in accordance with the norms. Unlike the reports of the Committees fixed under the general directions, there was no order directing that the report of this Committee be filed in the Supreme Court. In our view, approval of this report was not required because the Supreme Court had directed the State Government to follow the norms fixed by the Committee.

While deciding these cases, we are also taking consideration the specific of the Apex Court, wherein it is directed to all concerned including all High Court to ensure that the orders of the Apex Court are complied with.

We now take up each of the cases individually in the light of the observations made here-in-above.

LPA No. 152 of 2007

The appellant is the H.P. State Forest Corporation in this case. He main grievance of the appellant in this case is that the learned Single Judge has wrongly prohibited the removal and felling of fallen trees, diseased and dry timber. The directions given in respect of State Pradesh in the order dated 12.12.1996 clearly show that the Apex Court had permitted the State Government either departmentally or through the State Forest Corporation to remove fallen trees or fell and remove diseased or dry timber from areas other than those notified under Section 18 or Section 35 of the Wild Life Act. The State Government was required to constitute an Expert Committee to fix the quantitative and qualitative norms for the felling of fallen trees and diseased and directed that the State shall ensure that the trees are felled in accordance with the norms fixed. It is not disputed before us that the Expert Committee was constitute and has also fixed the norms. This report of the Committee, in our considered view, did not require any further approval from the Apex Court.

In view of the above discussions, we are of the considered view that the direction given by the learned Single Judge prohibiting the removal of fallen timber, diseased and dry standing timber are not correct and same is set-aside. However, in terms of the orders of the Apex Court even fallen trees, diseased and dry standing timber cannot be removed from the areas falling within the purview of the Wild Life Act. The appeal is allowed in the aforesaid terms. No order as to costs.

LPA No. 1 of 2008

The appellants in LPA No.1 of 2008 were not parties to the writ petition before the learned Court. They are contractors who have purchased Khair trees. According to the appellants, these Khair trees are standing on private land in different revenue estate. They applied for permission to fell the trees. Felling permission was granted but now due to the impugned judgment they cannot remove the Khair trees. Therefore, they have prayed that they may be permitted to file the appeal and have also prayed that in respect of Khair trees no directions have been issued to the State of Himachal Pradesh and felling of trees, especially Khair trees on the private land is not banned.

At the outset we may point out that in terms of the order of the Apex Court and as held by this Court in CWP No. 203 of 2001, the report of the Expert Committee in respect of forest has not been either accepted of rejected by the Apex Court. The report of this Committee was not only required to be placed before the Apex Court but order were required to be obtained from the Apex Court. The Apex Court has especially given directions that no Court should allow felling of trees from forest land. Whether the land in question falls within the ambit of the definition of the word "Forest", is something which will have to be decided only after the report of the Committee is accepted or rejected by the Apex Court.

It would be relevant to mention that in respect of the State of Jammu & Kashmir, the Apex Court held that permission granted to fell khair trees amounted to violation of the orders of the Apex Court. It is, therefore, obvious that Khair trees when they from part of a forest are also covered by the orders of the Apex Court. Clarification, if any has to be obtained from the Apex Court. The parties, if they want any clarification of the orders of the Apex Court must approach the Apex Court only. This Court cannot clarify the orders of the Apex Court. This appeal is, therefore, without any merit and is accordingly dismissed.

LPA No. 2 of 2008

This appeal has been filed by the State. The State has prayed that the order of the learned Single Judge dated 23.11.2007 be set-aside. The appellant is concerned the following four issues:-

- i) Remove of dry/fallen trees from the forests through Himachal Pradesh State Forest Corporation Ltd.(HP. SFC).
- ii) Felling of trees involved in diversion of forest land cases for Projects etc. after taking clearance of the Government of India under the Forest Conservation Act, 1980.
- iii) Felling of trees from the private lands under the provisions of Land Preservation Act, 1978.

iv) Felling /removal of trees from Government land which are not in the ownership of Forest Department (i.e. lands under the possession of PWD, IPH Deptt., Health Department, Education Department, Department of Urban Development, Industries Department, etc.)

Removal of dry/fallen trees from the forests through Himachal Pradesh State Forest Corporation Ltd. (HP. SFC.)

As far as the first contention is concerned, we have already dealt with the same while dealing with the appeal filed by the Forest Corporation in LPA No. 152 of 2007. Therefore, nothing further needs to be said, as far as this point is concerned.

Felling of trees involved in diversion of forest land cases for projects etc. after taking clearance of the Government of India under the Forest Conservation Act, 1980.

It has been argued on behalf of the State that all the projects wherein clearance has been received from the Government of India under the Forest Conservation Act have come to a standstill due to the orders of the learned Single Judge. It would be apposite to mention that the Apex Court while giving directions to the State of Himachal Pradesh and the other hills regions in direction 4 has clearly stated that felling of trees in any forest or any clearance of forest land in execution of projects shall be in conformity with the Forest Conservation Act and any other lays applying thereto. It further directed that the felling and disposal of such trees would be done only by the Forest Corporation and o private agency would be involved.

We are of the considered view that if the State Government has obtained permission of the Government of India under the Forest Conservation Act then in terms of the orders of the Apex Court it is entitled to get the trees felled through the agency of the State Forest Corporation. The direction of the learned Single Judge totally banned the felling f trees is not in consonance with the orders of the Apex Court. All development projects cannot be brought to a halt. The construction of roads, dams and other major projects is essential for sustainable development. Some trees may be required to be felled in order to commission trees projects. Permission to cut the trees has to be obtained in accordance with the provisions of the Forest Conservation Act. The Authorities who grant the permission are expected to ensure that the proper balance is struck and after weighing the pros and cons of the case the permission is either granted or rejected. If permission is granted then

there is no impediment in the way of felling of trees and same should be felled to complete the project. In case a project is cleared by the Government of India and permission has been granted to fell the trees, the concerned department shall be entitled to fell the trees which fall within the purview of the project.

Felling of trees from the private lands under the provisions of Land Preservation Act, 1978.

The contention on behalf of State is that private Land Preservation Act are not covered under the judgment of the Apex Court. We are unable to accept this contention. The judgment of the Apex Court winded the scope of the word forest and Expert Committees were constituted to give their recommendations in this behalf. As per the dictionary meaning, forest means "any compact piece of wooded land". In the conscience Oxford English Dictionary the word forest has been given the following meaning "a large area covered chiefly with trees and under growth". What is meaning of large area? In Himachal Pradesh the committee recommended that in respect of private land a compact block of wooded land above hectares should be declared to be forest.

We have already clearly held above that this report has been approved by the Apex Court. The Apex Court may approved the report as it stand or may substitute the area of 5 hectares with a larger or smaller area. Therefore, the definition of the word forest is in a nebulous stage. Any area which is covered mainly with trees and undergrowth would be deemed to be a forest and therefore, felling of trees from private lands under the provisions of the Land Preservation Act cannot be permitted till the definition of the word forest as suggested by the Expert Committee is approved by the Apex Court. This contention is accordingly rejected.

Felling /removal of trees from Government land which are not in the ownership of Forest Department (i.e. lands under the possession of PWD, IPH Deptt. Health Department, Education Department, Department of Urban Development, Industries Department, etc.)

For the reasons stated in respect of point No.3 above, regardless of the ownership of the land, if he land in question is forest land, no permission to cut the trees can be granted, who-so-ever may be the owner of the land. However, we may

clarify that the judgment of the Apex Court is only in relation to the forest land and either the land should be forest in the revenue records or it must be a forest given the dictionary meaning.

In case, the land is not covered mainly with trees or undergrowth and there is only sporadic growth of a few trees in a large area the such trees can be felled /removed, since the land cannot be said to be the forest land.

CWP No.1661 of 2007

The case of the petitioner in this case is squarely covered by our observations in respect of LPA No. 1 of 2008. The petitioner here also is a contractor, dealing in Khair trees. For the reasons we have already given in respect of LPA No. 1 of 2008, this petition is rejected.

CWP No.11 of 2008

The petitioners are owners of and falling in Kot and Kohila beat in block-Khanag, Chowai Forest Range, Forest Division, Ani. According to the petitioners, they had obtained permission under the 10 years felling programme to fell the trees through their power of attorney. According to them since the permission to fell the trees has already been granted, they may be permitted to cut the trees. It is also urged that their case is not covered by any of the orders passed by the Apex Court and therefore, they should be allowed to fell the trees.

The argument of the petitioner cannot be accepted. First of all, it appears that the growth of trees though on private land is in the nature of forest. No doubt, the trees are purported to be felled in accordance with the 10 years felling programme but there is no material on record which shows that the working plan(s) or the 10 year felling programme under which the petitioner were granted permission to fell trees have been approved by the Central Government. In general Direction No. 3 given in the order dated 12.12.1996, the Apex Court had clearly held that felling of trees in forest can be undertaken only in terms of the working plant of the State Government approved by the Central Government. Since, there is no material to show the working plan of the 10 year felling plan under which the petitioner has been granted permission has been approved by the Central Government. The petitioners cannot be permitted to fell any trees. The writ petitioner is accordingly rejected.

We may summaries our findings in the following terms:-

(1) There shall be no felling of any tree in any forest area in the State of Himachal Pradesh whether private or State Forest except in accordance with the orders given by the Apex Court.

(2) The report of the Committee appointed under the General Directions of the Apex Court given in its order dated 12.12.1996 require the approval of the Apex Court.

(3) Report of the Committee constituted pursuant to direction No. 3 in respect of specific directions given to the State has to be complied by the State without any further orders from the apex Court.

(4) The State Government is entitled either departmentally or through the State Forest Corporation to remove fallen trees of fell and remove diseased trees and dry standing timber except from areas notified under Section 18 or Section 35 of the Wild Life Protection Act or any other Act banning such felling or removal of trees.

(5) The State Government or any other authority executing a project shall be entitled to remove and fell trees in case permission has been taken under the provisions of the Forest Conservation Act and other laws applicable thereto.

(6) That felling of tees in all forests shall remain suspended except in accordance with the working plans of the State Government approved by the Central Government.

(7) Removal of Khair trees from forest land is not permitted till clarification is obtained from the Apex Court.

(8) The order if the Apex Court is applicable to forest lands only.

The appeals/petitions are disposed of in the aforesaid terms, with no order as to costs.

28th May, 2008

(Jagdish Bhalla), C.J. (Deepak Gupta), J.

Appendix No.- LIV

IN THE HIGH COURT OF HIMACHAL PRADESH, SHIMLA.

COPC No.56/2009

Reserved on:17.8.2009

Decided on:28.8.2009

Kuldip Singh Chauhan. ... Petitioner.

Versus

Balbir Thakur and others. ... Respondents.

Coram:

Hon'ble Mr. Justice Rajiv Sharma, Judge. Whether approved for reporting? 1 Yes.

For the petitioner: Mr. Ajay Mohan Goel, Advocate.

For the Respondents: Mr. B.M. Chauhan, Advocate for respondent No.1.

Mr. R.K. Gautam, Senior Advocate with Mr. Sandeep Kumar Pandey, Advocate for respondent No.2.

Mr. Lokender Thakur, Advocate for respondent No.3.

Mr. R.K. Sharma, Sr. Addl. A.G. with

Mr. Anil Jaswal, Deputy Advocate General for respondents No.4 and 5.

Mr. Rajeev Jiwan, Advocate vice

Mr. Sandeep Sharma, Assistant Solicitor General of India for respondents No. 6 and 7.

1 Whether reporters of the local papers may be allowed to see the judgment? Yes.

2

Rajiv Sharma, Judge

The present petition has been preferred for initiating action against respondents No. 1 to 3 for the violation of the directions issued by this Court in CWP No. 1358/200. The precise case of the petitioner is that respondents No.1 to 3 are instrumental in construction of road in Sharoli Jungle without seeking the mandatory permission under the provisions of the Forest (Conservation) Act, 1980 and also for felling of trees despite the directions issued by this Court on 29.5.2007 whereby green felling was prohibited in the entire State of Himachal Pradesh. Respondent No.1 has filed the reply. He has denied his involvement in illicit felling of trees in Sharoli Jundge (Mandal Beat). Respondent No.2 has also filed reply to the petition. He has admitted in his reply that certain people of surrounding villages, including respondent No.1 started construction of a road in Mandal Beat and as many as 29 kail saplings were damaged. Accordingly, the damage report was prepared and that a sum of Rs. 23,925/- was recovered towards damages. Accordingly, the JCB, which was in possession of the Forest Department, was released after the receipt of fine and compensation. Respondent No.3 also filed reply. According to him, the tenders were

floated on 10.4.2008 for the work in question i.e. C/O link road from Bakan Nallah to village Kohali. These were to be opened on 25.5.2008. However, the same stood cancelled due to technical reasons on 17.5.2008. The petitioner has also filed supplementary affidavit whereby he has given the details of five link roads, which were constructed without the permission

under the Forest (Conservation) Act, 1980. The 'no objection certificates' as per the contents of the supplementary affidavit had been issued by the Range Forest Officer, Sarswati Nagar for construction of these roads. The 'no objection certificates' are marked as Annexures PC-1 to PC-5. The petitioner has also placed on record the photographs reflecting the damage caused to the forest wealth while undertaking the construction of the roads in question. The petitioner has reiterated in the rejoinder filed to the reply filed by respondent No.1 that the road was constructed in Panchayat, Mandal. According to the contents of rejoinder, the illicit felling has taken place in forest Sharoli and Dulu. What emerges from the pleadings of the parties is that the road in question was constructed despite the mandatory directions issued by this Court from time to time in CWP No. 1358/2001. An LPA was preferred against the judgment of this Court dated 23.11.2007. The Division Bench of this Court upheld the judgment except that respondent-State and the Corporation were permitted to remove fallen and diseased trees. Respondent No.1 though has denied his involvement in the illicit felling of trees, but it is evident from the damage report placed on record that he was involved in illicit felling of trees and he has paid the damages amounting to Rs. 23,925/-. Respondent No.2 has also admitted in the reply that respondent No.1 along with other persons was involved in illicit felling of trees. Respondent No.1 is the Pradhan of the Gram Panchayat, Mandal. Respondent No.2 is the custodian of the forest wealth in his area. He was supposed to be very prompt to take action against the persons who were involved in felling of trees. In the supplementary affidavit filed by the Additional Chief Secretary (Forest), it has come that respondent No.2 was not involved in any manner since his subordinates have issued the 'no objection certificates'. According to the contents of the supplementary affidavit, the officers, namely Pratap Singh, Jia Lal, Hiteshwar and Surinder Kumar were involved in issuing the 'no objection certificates' and against them action has been initiated. The Court after taking into consideration the material placed on record has added the Principal Secretary (PW) and Principal Secretary (Forests) to the Government of Himachal Pradesh vide order dated 10.7.2009. The Court had issued the following directions to the newly added respondents:

- i) Whether necessary permission under the Forest (conservation) Act, 1980 was ever sought and granted by the authorities while initiating the construction work of the link 8 mentioned in the supplementary affidavit;
- ii) In case no permission was ever granted by the authorities under the Forest (Conservation) Act, 1980, why the Forest Range Officer, Sarswati Nagar has issued 'no objection certificate' and what action, including disciplinary action has been taken against him;
- iii) Whether the construction has been carried of the roads in question through the agency of Public Works Department or by the contractor. In case the construction has been carried by the agency of the Public Works Department, the names of the officers, who have undertaken the construction of the link roads without the permission under the Forest (Conservation) Act, 1980 are to be disclosed giving their rank as well. In case the construction has been

undertaken by the contractor(s) his/their name(s) be disclosed;

- iv) The Principal Secretary (PW) and Principal Secretary (Forest) shall give the details of all the roads and link roads which have been constructed through the State of Himachal Pradesh without the necessary permission contemplated under the Forest (Conservation) Act, 1980;
- v) The Principal Secretary (Forest) is further directed to explain the manner in which the trees, which have been illicitly felled while undertaking the construction of the road, have been disposed of."

Respondents No.4 and 5 filed supplementary affidavit as directed by this Court vide orders dated 10.7.2009 and 28.7.2009. The Principal Secretary (PW) has undertaken on behalf of the State of Government by way of this affidavit that the Public Works Department/State shall not undertake construction of any road in violation of the Forest (Conservation) Act, 1980 and the action shall be initiated as per law against the defaulters/erring officers/officials, who have constructed the roads in violation of the Forest (Conservation) Act, 1980. It will be apt to reproduce paras 4 and 5 of the affidavit filed by the Principal Secretary (PW) on 28.7.2009:

- "4. That as far as the position with regard to necessary permission contemplated under the Forest (Conservation) Act, 1980 is concerned, the deponent on behalf of Public Works Department/State undertakes that henceforth no road shall be constructed by the Public Works Department in violation of Forest (Conservation) Act, 1980.
- 5. That with regard to violation if any found to have been committed of Forest (Conservation) Act, 1980 while constructing public roads by the Public Works Department, the Deponent undertakes that action as provided under the law shall be initiated against the defaulting/erring officers/officials who have constructed the said road(s) in violation of Forest (Conservation) Act."

Respondent No.5 also filed supplementary affidavit on 29.7.2009. It has been admitted by respondent No.5 that no permission under the Forest (Conservation) Act, 1980 was sought for the construction of the link roads mentioned in the affidavit filed by the petitioner. It has come in this affidavit that the Deputy Ranger, who was holding the charge of Sarswati Nagar and Sh. Jai Prakash, Deputy Ranger, Sarachali Block have issued 'no objection certificates' at their own level without the information of the Divisional Forest Officer for the construction of the roads mentioned in the supplementary affidavit of the petitioner. It has come in the affidavit that 80 roads/link roads were constructed throughout the State of Himachal Pradesh without necessary permission under the Forest (Conservation) Act, 1980. Out of these 80 roads, no permission has been sought in respect of 67 roads/link roads whereas 13 roads forest land diversion of which was either under process or had been accorded in principal approval by the Government of India had been constructed without waiting final approval of the proposal from the Government of India under the Forest (Conservation) Act, 1980. The Additional Chief Secretary (Forests) filed supplementary affidavit on the basis of directions issued on 29.7.2009. In this affidavit, the number of roads constructed without the permission has gone up from 80 to 116. The Principal Secretary (PW) also filed the affidavit in sequel to order dated 29.7.2009. In his affidavit, it is stated that 47 roads alleged to have been constructed by the Himachal Pradesh Public Works Department in violation of the Forest (Conservation) Act, 1980. The deponent had sought for additional four weeks time to supply the information. The Principal Secretary (PW) filed the affidavit on 11.8.2009. In this affidavit, the numbers

have increased to 75 roads, which were constructed by the Public Works Department. The Court issued detailed directions to the respondents i.e. respondents No.4 and 5 on 6.8.2009 to supply the complete information of the roads which were constructed in violation of the Forest (Conservation) Act, 1980 and the proposed action against the defaulters. The Additional Chief Secretary (Forests) filed an affidavit on 11.8.2009. It was for the first time that in this affidavit it has come that the Deputy Commissioner has been requested to initiate the action against the Patwari, who had issued 'no objection certificates' in violation of law. The matter was also referred to the Principal Secretary (RD) to the Government of Himachal Pradesh for initiating action against the Block Development Officer, Jubbal for construction of roads undertaken by him in violation of the Forest (Conservation) Act, 1980. A bare perusal of the affidavit filed by the Additional Chief Secretary (Forests) dated 16.8.2009 reveals that 98 roads have been constructed in the forest areas without seeking the permission under the Forest (Conservation) Act, 1980. It is a startling figure. The details of these roads are placed on record vide Annexure A-I with the supplementary affidavit dated 16.8.2009. Similarly, the construction of the roads has been undertaken by the authorities in which forest land diversion proposal was either under process or principal approval has been accorded but the roads were constructed without waiting for the final approval from the Government of India. This information has been placed on record vide Annexure A-II. The perusal of this Annexure A-II reveals that in the process of construction of these 18 roads, in all, 1513 trees have been felled by the authorities without the prior permission of the competent authorities under the Forest (Conservation) Act, 1980. It is evident from the information supplied by respondent No.4 and 5 that 116 roads have been constructed in the State of Himachal Pradesh without seeking mandatory permission under the Forest (Conservation) Act, 1980. Out of them, 75 roads have been constructed by the Himachal Pradesh Public Works Department under the supervision of the Block Development Officers after sanctioning of the amounts by the respective Deputy Commissioners. The Pradhans of Gram Panchayats like respondent No.1 are also instrumental in construction of roads in negation of rule of law. It was imperative for the Deputy Commissioners and other agencies of the State to ensure that no road is constructed without permission from the Government of India under the Forest (Conservation) Act, 1980. The

officers/officials of the Forests Department, Himachal Public Works Department and the Contractors to whom the work was assigned are guilty of undertaking the construction of roads despite the mandatory directions issued by this Court from time to time and also in violation of the Forest (Conservation) Act, 1980. Respondent No.1, as discussed hereinabove, has indulged in illicit felling of trees which resulted in issuance of damage report. As sum of Rs. 23,925/- stood recovered from him. Respondent No.2 was not involved directly in granting the 'no objection certificate' as per the supplementary affidavit filed by the Principal Secretary (Forests). The 'no objection certificates' have been issued by the persons, who are not authorized to do so as per the contents of the supplementary affidavit filed by respondents No. 4 and 5 by the Patwaris, Deputy Rangers, Forest Guards etc. The stern action is to be taken against those persons, who have failed to abide the directions issued by this Court punctually and also violated the Forest (Conservation) Act, 1980. The Principal Secretary (PW) has in a very bold manner undertaken to take action against the defaulting officers/officials. He has also undertaken that the State Government and Public Works Department shall not construct any road in violation of the Forest (Conservation) Act, 1980. The action has also been initiated by the Forests Department by punishing officers involved in illicit felling of trees in Sharoli and Dulu forest areas. In this case the action is also to be taken against the Block Development Officers, who have undertaken the construction of the roads on the basis of various schemes floated by the Centre/State Governments after the money was sanctioned by the respective Deputy Commissioners in violation of the mandatory provisions of the Forest (Conservation) Act, 1980. The respondents have supplied the information in piecemeal to the State Government after the issuance of repeated directions. Since the information as directed was not forthcoming, the Central Bureau of Investigation was arrayed as respondent No.7.

The Parliament has enacted the Act called "the Forest (Conservation) Act, 1980. Section 2 thereof imposes restrictions on the de-reservation of forests or use of forest land for non-forest purposes. Section 3-B deals with offences by authorities and Government Departments. The Central Government has also framed the rules called "the Forest (Conservation) Act, 2003. Rule 9 thereof provides the mechanism for proceedings against persons guilty of offences under the Act. Accordingly, in

view of the observations made hereinabove, respondent No.1 is found guilty of committing contempt of this Court for willful disobedience of the orders passed by this Court in CWP No.1358/2001. Respondent No.2 is absolved/exonerated. Respondent No.3 knowing fully well being a Government Officer that there is a ban on green felling has invited tenders though the same were subsequently cancelled. However, he is directed to be careful in future. Respondent No.1 is the Pradhan of Gram Panchayat, Mandal. He has already deposited the fine imposed amounting to Rs. 23,925/-. Respondent No.1 has been held guilty for committing contempt of the orders passed by this Court in CWP No. 1358/2001. However, instead of sentencing or directing him to pay a fine, the interest of justice will suffice if he is directed to plant at least 500 plants of Deodar on the land to be provided by the Forest Department. The nourishment of these plants shall be the responsibility of respondent No.1 under the supervision of the Divisional Forest Officer concerned. He shall look after the plants for a period of five years. Thereafter the up-keep of the trees planted by respondent No.1 being Pradhan of Gram Panchayat, Mandal shall be taken over by the Divisional Forest Officer concerned of the area. This will also ensure the participation of the local people in protecting, conserving and preserving the forest wealth of the State of Himachal Pradesh. In view of the specific directions issued to respondent No.1 to plant 500 trees of Deodar, the conviction of respondent No.1 under the contempt jurisdiction shall not in any manner affect the status of respondent No.1 as Pradhan of the Gram Panchayat. It is clarified that no separate proceedings shall be initiated against him. The Court takes judicial notice of the fact that in the process of seeking 'no objection certificates' from the agencies constituted under the Forest (Conservation) Act, 1980 is tardy and time consuming. Consequently, respondent No.6 is directed to ensure that as and when the applications for 'no objection certificate' are received, the needful be done within a reasonable period so that there is no delay in undertaking the construction of projects through forests areas. The delay in granting the permission escalates the cost of construction and the burden passes on to the tax-payers. The agencies while issuing 'no objection certificate' shall also ensure that at least the site is visited once to ensure minimum damage to the forest wealth. They should not merely rely upon the report furnished by the State agencies. Now, the Court has to issue necessary directions to respondent-State to take suitable action against the persons, whose details find mention in the Annexure annexed with the supplementary affidavits filed by respondents No.4 and 5. The persons mentioned in 12 these Annexure resumed the construction of roads without prior permission of the Central Government under the Forest (Conservation) Act, 1980. The Principal Secretary (PW) has also undertaken to take disciplinary action against the persons involved in the construction of roads in violation of law. The Additional Chief Secretary (Forests) to the Government of Himachal Pradesh has also suspended three Officers of the Department. The necessary instructions have been issued to the Deputy Commissioner to take action against the Block Development Officer, Jubbal. The directions have also been issued to the Deputy Commissioners to initiate proceedings against the Patwari, who have issued 'no objection certificates' at their own level. Mr. Sandeep Sharma, learned Assistant Solicitor General of India on the previous date of hearing has assured the Court that the action shall be taken against the defaulters who have violated the mandatory provisions of the Forest (Conservation) Act, 1980. It is evident from the contents of Annexure R-3 (Page 124) that the Forest Department has been compounding the matters in violation of section 68 of the Indian Forest Act. The necessary notification for compounding has to be issued by the State Government and the same has to be published in the Gazette. There is no deterrence in the prevailing instructions issued by the State Government. The stern action is required to be taken against the persons, who are involved in illicit felling of trees. The action should be taken departmentally and the prosecution should also be launched against the defaulters. Accordingly, the following directions are issued to the respondent-State:

- i) The Himachal Pradesh Public Works Department/State shall not undertake the construction of any road in the forest areas without the mandatory permission under the Forest (Conservation) Act, 1980 as undertaken by the Principal Secretary (PW) in his affidavit;
- ii) Stern disciplinary action be taken against the persons as per the undertaking given by the Principal Secretary (PW) against the officers/officials whose details are given in the Annexure filed with the supplementary affidavits while constructing roads in violation of the Forest (Conservation) Act, 1980. The disciplinary proceedings shall be

commenced within a period of six weeks and the same shall be concluded as far as possible within a period of one year;

- iii) The Additional Chief Secretary (Forests) is also directed to take suitable disciplinary action against the persons, who are involved in granting 'no objection certificates' in violation of the Forest (Conservation) Act, 1980 while undertaking the construction of 166 roads. The disciplinary proceedings shall be commenced within a period of six weeks and the same shall be concluded as far as possible within a period of one year;
- iv) The Deputy Commissioners in the State of Himachal Pradesh are directed to ensure that the Block Development Officers/Pradhan/Patwari, who are instrumental in the construction of roads in violation of Forest (Conservation) Act, 1980 are dealt with departmentally. The necessary charge-sheet etc. shall be issued within a period of six weeks and the inquiry be completed as far as possible within a period of one year;
- v) Since admittedly 116 roads have been constructed in violation of the Forest (Conservation) Act, 1980, the action under this Act shall also be taken against the
- persons by the competent authorities prescribed under the Forest (Conservation) Rules, 2003. The action shall be initiated by the prescribed authorities within a period of one month from today. The details of the persons against whom the action is to be taken are provided in the Annexures filed with the supplementary affidavits of respondents No.4 and 5.
- vi) The respondent-State is suggested to issue necessary notification under section 68 of the Indian Forest Act dealing with the cases of illicit felling. The Court hopes and trusts that strong action will be taken against the persons, who are involved in the illicit felling of trees.
- vii) In order to ensure and supervise that the directions issued are complied with punctually, a committee of following two officers comprising of Mr. P.C. Kapoor, Principal Secretary (PW) Government of Himachal Pradesh and Mr. Upasak, Addl. S.P., Central Bureau of Investigation is constituted. The committee shall file the status report after

every three months disclosing the latest status of the disciplinary proceedings initiated against the defaulters for a period of one year;

In view of the aforesaid discussion, the petition is disposed of. The pending application(s), if any, also stand disposed. The notices issued to respondents No. 1 to 3 stand discharged. No costs.

(Rajiv Sharma), J.

28.8. 2009

Appendix No.- LV

IN THE HIGH COURT OF HIMACHAL PRADESH SHIMLA

Cr.MP(M) No. 1299/2008

Decided on 20.5.2011

Shri Yoginder Singh S/o. late Shri Gulab Singh R/O. Village Bhatwari, Post Office Kaloti, Tehsil Chirgaon, District Shimla, H.P.

Petitioner

Versus

State of Himachal Pradesh

Respondent

Order

Present: Mr. Ajay Mohan Goel, Amicus Curiae, Mr. Vikas Rathore, Dy.A.G. with Mr. R.P. Singh, Assistant Advocate General for the respondents, Mr. S. Roy, Additional Chief Secretary (Forests) and Mr. Deepak Shanan, Principal Secretary (Revenue) In person.

The Principal Secretary (Home) is added as party respondent on the oral application of Mr. Ajay Mohan Goel. The Registry is directed to carry out necessary correction in the memo of parties.

2. The ancient Roman Empire developed a legal **theory known as "Doctrine of the Public Trust".** The Public Trust Doctrine primarily rests on the principle that certain resources like air, sea, waters and the forests have such a great importance to the people as a whole that it would be wholly unjustified to make them a subject of private ownership. The said resources benign a gift of nature, they should be made freely available to everyone irrespective of the status in life. The

doctrine enjoins upon the government to protect the resources for the enjoyment of the general public rather than to permit their use for private ownership or commercial purposes.

- 3. This Court has passed various orders whereby the respondent State was called upon to take effective steps by instituting proceedings against the unscrupulous persons, who have encroached upon the forest land. The court had been asking the State Government to file affidavit from time to time to give the status of the cases instituted against these persons. The Court is not satisfied the manner in which the matter has been dealt with by the respondent State as far as initiation of proceedings against those persons are concerned.
- 4. According to Mr. Vasudeva, who had appeared on 19.5.2011, about 275 evictions have been made from the total 2000 odd cases. This is a tardy progress. The Court, in order to arrest the menace of encroachment upon the forest land, had requested the Additional Chief Secretary (Forest) and Principal Secretary (Revenue) to be present in the Court to assist it. The Court has very interactive session with these two Officers. Mr. S. Roy, Additional Chief Secretary (Forest), on the basis of he instructions issued on the subject on 5.5.2011, has undertaken that F.I.Rs. shall be registered against the persons, who have encroached upon more than 10 bighas of forest land within a period of one month. Mr. Deepak Shanan has assured the Court that all necessary assistance shall be rendered by the Department of Revenue to the Department of Forests to detect the encroachments upon the forest land by supplying the necessary revenue record to the Forest Department.
- 5. It is the fundamental obligation of all the citizens to protect the forests. The registration of F.I.Rs. against the persons, who have encroached upon more than 10 bighas of forest land, will definitely a deterrence not to encroach upon the forest land. It is not that unscrupulous persons have encroached upon the forest land but in the process have also destroyed the forest wealth. The persons, who have encroached upon the forest land are required to be dealt with sternly and firmly. No leniency can be shown to those persons, who have shown scant respect to the law of land. In case, no stern action is taken against these persons, it will negate the rule of law.

- 6. **The Court appreciates the fair and bold stand** taken by Mr. S. Roy and Mr. Deepak Shanan in order to check the menace of encroachment on the forest land. The Court is of the considered view that in order to effectively register the F.I.Rs. against those persons, who have **encroached more than 10 bighas of forest land,** it is necessary to constitute a Task Force(s) in the Departments of Forests, Revenue and Police, and accordingly, the following mandatory directions are issue in view of the observations and discussions made herein above,:
- i) The Task Force(s) shall be constituted in the Departments of Forests and Revenue by the Departments of Forests and Revenue by the Additional Chief Secretary (Forests) and Principal Secretary (Revenue) to facilitate the process of registration of F.I.Rs, including putting up challan(s) in the appropriate Courts of law;
- ii) The Principal Secretary (Home) shall also Constitute a Task Force to be headed by an officer not below the rank of Superintendent of Police in each district to be assisted by a team of competent officers/officials for the purpose of registration of F.I.Rs., investigation and thereafter putting up the challan(s) in the appropriate courts of law.
- iii) The F.I.Rs., as undertaken by the Additional Chief Secretary (Forest), shall be registered against the persons, who have encroached upon more than 10 bighas of forest land, within a period of one month from today. Thereafter, the matter shall be investigated within a further period of four months. The challan(s) shall be put up immediately after the completion of investigation, i.e. after four months;
- iv) In order to monitor the progress of registration of the cases promptly, investigation and putting up of challan(s), Monitoring Committee consisting of the Additional Chief Secretary (Forests) and Principal Secretary (Revenue) is constituted. These two officers have been appointed as Members of the Monitoring Committee, taking into consideration their credential, integrity, probity and concern to protect the property of the State.
- v) The Task Force(s) constituted in the Departments of Forest(s), Revenue and Police Department shall directly work under the superintendence and control of the Monitoring Committee.

- 7. However, it is made clear that in case of any difficulty faced by the Monitoring Committee, it may move appropriate application for clarification/modification of the orders.
- 8. Copy Dasti, on usual terms. List this case after six months.

Sd/-20.5.2011 (Rajiv Sharma)

APPENDIX - LVI

RECORD OF RIGHTS OF USER FOR THE DEMARCATED FORESTS OF THE RAMPUR TEHSIL, BUSHAHR STATE

- (1) Grazing of domestic and agricultural cattle: for cattle, Sheep and goats during the whole year. To obtain free of charge trees of kinds other than deodar for making "Karli" or water troughs: provided that no kail tree of girth at breast height of more than 6 feet shall be granted.
- (2) Timber of building purpose according to the rules prescribed by the Punjab Government from time to time.
- (3) Right of way for men and cattle along footpaths and roads of villages, alpine pastures, water springs, cremation grounds or grounds used for annual fairs, and to obtain trees other than deodar free for the repairs of bridges.
- (4) To cut brushwood and thorny shrubs.
- (5) To collect fallen coniferous needles and leaves of broad leaved trees for bedding and manure.
- (6) To collect dry and fallen wood for fire wood and personal use and for sale, and to remove all fallen trees except deodar, and to fell and remove dry standing trees except deodar and blue pine and to lop dead branches of all trees.
- (7) To lop trees of broad leaved species for fodder and bedding for cattle and to lop for fire wood broad leaved trees other than ash, Walnut, Shisham and box.
- (8) To cut grass.
- (9) To collect fruits, edible seeds, flowers, medicinal roots and leaves for the preparation of dyes, incense and honey and to sell such products without permission.
- (10) To collect "Nirgal" bamboos and to sell baskets made there form.
- (11) To cut and collect for personal use and to sale to agriculturists within the State torch wood and to extract resin from: -
- (i) All dry standing trees except trees except deodar.

- (ii) All green and dry fallen trees except deodar.
- (iii) malformed blue pine trees especially marked for the purpose.
- (iv) Stumps of all felled trees, provided the marks if any, applied by the forest officer are left intact.
- (12) To extract and collect, for sale or personal use slated from existing quarried and scattered rocks for building purposes.
- (13) To cut and remove for burning the dead and construction of biers two trees, deodar excepted, not exceeding 2 haths in girth at 4 feet 6 inches from the ground. Provided that notice of such cutting shall be given to the local forest guard within 15 days from the date of cutting. To cut wind fallen deodar for making "Tabut" for coffins for the dead.
- (14) To collect earth for plastering purposes and stone for building purposes.
- (15) To burn the dead on the recognized burning grounds.
- (16) To keep cattle on the thatches included in the forest.
- (17) To cut and sell to agriculturists within the state, Oak and other broad leaved trees for the preparation of ploughs, other agricultural implements, and domestic utensils: and also conifers, deodar excepted, for plough handles (Sainji), Sohaga and Poles for ricks (talatu): no trees thus used to exceed one hath in girth at 4 feet 6 inches from the ground; except broad leaved trees used for making a ploughshare for 'hal' for which larger trees are used.
- (18) To lop blue pine, spruce and silver fir trees for manure, litter, firewood and charcoal and chil trees for charcoal, for the manufacture and repair of agricultural implements, no tree under 2 haths in girth at 4 feet 6 inches from the ground being lopped and the lopping to be restricted to the lower half of the tree. This privilege conveys no absolute right to lop coniferous trees and may be withdrawn at any time at the will of the Government.
- (19) To cultivate fields situated within the forest boundaries and admitted at the time of the forest Settlement.
- (20) To maintain and repair the existing mills and water channels in demarcated forests.
- (21) To cut for each village up to 4 small blue pine silver fir, or spruce poles annually for "Parahai" in Baisakh and up to 4 small blue pine or Oak poles for "Chui" in Phagan.

- (22) To remove the bark from broad leaved species for tanning purposes provided the removal of the bark is carried out in such a way as not to endanger the life of the tree.
- (23) To obtain trees of species other than deodar free of repairs of channels of water mills and irrigation channels, and to obtain stumps of forked deodar trees for existing oil presses; such tree being marked by the forest guard in order to avoid delay.

Appendix No.- LVII List of existing Road and Path

1			ſ	
1			ſ	
1			ſ	
1			ſ	
1			1	ı l
1			1	ı l
1			ſ	
1			1	ı l
1			1	ı l
1			1	
1			1	ı l
1			1	ı l
1			ſ	
1			1	
1			1	ı l
1			1	
1			1	
1			1	
1			1	ı l
			1	
1			ſ	
1			1	ı l
1			1	ı l
1			ſ	
1			1	ı l
1			1	ı l
1			ſ	
1			1	ı l
1			1	
1			ſ	
1			ſ	
1			1	
1			1	
1			ſ	
1			ſ	
1			ſ	
1			ſ	
1			ſ	
1			ſ	
1			ſ	
1			ſ	
1			ſ	
1			1	
1			1	
1			1	ı l
1			1	ı l
1			1	ı l
1			1	ı l
1			1	ı l
1			ſ	
1			1	ı l
1			1	ı l
1			ſ	
1			ſ	
1			1	
1			ſ	
1			1	
1			1	
1			1	

			List of Exist	ing Buildings	

Appendix- LVIII

List of Ranges, Blocks and Beats in Rampur Forest Division

S	N	N	N
r	a	a	a
	m	m	m
	e	e	e
N			
0	0	0	0
	f	${f f}$	f
	R	В	В
	a	1	e
	n	0	a
	g	c	t
	e	k	S
1	2	3	4
	S	1. S	1. B
1	a	a	a
	r	r	d
	a	a	h
	h	h	a
	a	a	1
	n	n	2. S
			a
			r
			a
			h
			a
			n
			3. B
			h

	T	
		a
		g
		a
		W
		2
		a ,
		ι
		K
		i
		n
		0
		0
)
	2. P	<i>) A</i> C
		4. S
	h	a
	a	r
	n	p
	c	a
	h	r
	a	a
		5. K
		a
		b
		0
		1
		1
		6. P
		h
		a
		n
		c
		h
		11

	1	
		a
	3. J	7. J
	h	h
	a	a
	σ	σ
	5	5
	0	0
	Γ .	Γ .
	1	1
		8. R
		a
		W
		n
		c
		h
		2
		a
		9. K
		0
		0
		t
	4. G	10. G
	0	0
	р	p
	a	a
	1	1
	n	n
	P	ν
	u	u
	r	r
		11. D
		0
		f
		d
		a
		12. M
		12. 111

		a
		S
		h
		n
		u
R	5. R	13. P
a	a	a
m	m	S
p	p	h
u	u	a
r	r	d
		a
		14. S
		a
		n
		a
		t .
		h
		1
		i
		15. R
		a
		m
		p
		P 11
		•
		r 16 I
		16. J
		h
		a
		k
		r
		i
	6. N	17. N
	O. 11	17. 11

	T	T
	0	0
	g	g
	ĺ	Ī
	i	i
		18. D
		u
		t
		t
		n
		a
		g
		a
		r
		19. D
		a
		n
		S
		a
	7. D	20. D
	e	e
	0	0
	t	t
	h	h
	i	i
		21. K
		a
		S
		h
		a
		p
		a
		t
		22. M
		∠∠. 1 V1

<u>, </u>		<u> </u>
		u
		n
		i
		S
		h
		В
		В
		a
		n
		i
		23. D
		a
		r
		S
		h
		a
		1
В	8. B	24. B
В		
a	a	a
h	n	h
		l l
i	i	i
		25. C
		h
		0
		W
		k
		a
		26. J
		a
		I I
		a

		S
		h
		i
	0 0	27 0
	9. S	27. S
	u	u
	r	r
	a	a
	d	d
		28. B
		e
		0
		,,
		u
		n
		t
		h
		я
		1
		1
		29. K
		h
		a
		m
		III
		a
		d
		i
	10. T	30. T
	a	a
	1.	1,
	K .	K .
	e	e
	c	c
	h	h
	11	h 21 T
		31. T
		h

Part	_			
32. D a r r k a 11. N 33. B a n n n n k h h a r i i 34. N a n k h a r i 35. K u n g g a 1 1				e
32. D a r r k a 11. N 33. B a n n n n k h h a r i i 34. N a n k h a r i 35. K u n g g a 1 1				d
32. D a r r k a a 11. N a a 11. N a a n n n k k h h a r r i i 34. N a n k h a r r i 35. K u n n g g a 1 1				я
N				
N 11. N 33. B a 1 a a a a a a a a a a a a a a a a a				
a a a a a a a a a a a a a a a a a a a				a
a a a a a a a a a a a a a a a a a a a				r
a a a a a a a a a a a a a a a a a a a				k
a a a a g a a b a a a a a a a a a a a a				a
a a a a a a a a a a a a a a a a a a a				1
a a a a a a a a a a a a a a a a a a a				i
a a a a a a a a a a a a a a a a a a a		N	11 N	23 R
		a	a	a
r i i i i i i i i i i i i i i i i i i i		n	n	g
r i i i i i i i i i i i i i i i i i i i		k	k	a
r i i i i i i i i i i i i i i i i i i i		h	h	1
a n k h a r r i i 35. K u n g a a l		a	a	t
a n k h a r r i i 35. K u n g a a l		r	r	i
a n k h a r r i i 35. K u n n g a n g a a l		i	i	34 N
n k h a r i i 35. K u n n g a a l		•	•	
k h a r i 35. K u n g a 1				
				n
				K
u n g a l				h
u n g a l				a
				r
				i
				35. K
$oxed{ \begin{tabular}{cccccccccccccccccccccccccccccccccccc$				a
m				1
m m				
				m

_		
		u
		n
		d
		u
		e
		r
		36. B
		a
		i
		1
		_
		В
		a
		h
		1
		:
	10.00	1
	12. S	37. S
	h	h
	0	0
	1	1
	;	· · · · · · · · · · · · · · · · · · ·
	1	1
		38. C
		h
		a
		k
		t
		:
		1
		39. D
		e
		1
		9
		α +
		l 1
		h

1	2	3	4
		13. G	40. G
		a	a
		h	h
		a	a
		n	n
			41. P
			e
			0
			j
			n
			a
			42. A
			d
			d
			u
			43. T
			a
			p
			r
			0
			<u>g</u>
			44. J
			a L
			n u
T	4	1	u
1	4	$\frac{1}{3}$	4
0		3	7
9			
1			
ı			

Appendix- LIX

Manual for collection of field data

For

Preparation of Stock Map

I. Preparation of Stock Maps

A. Preliminary Stock Maps: The preliminary stock map of each forest shall be prepared on 4"=1 mile scale or on equivalent scale by viewing the forest from opposite hill or hill slopes or from any other convenient place from where a full or clear view of the forest can be obtained. Observations from the altitude equal to the one of the middle of the forest being stock mapped are likely to be precise. While carrying out the preliminary stock mapping, the information will be noted as under and in the order given below:

Forest Types

The forest types to be indicated on the tracing of the map will be broadly categorized as follows:

- a) Fir and Spruce
- b) Fir, Spruce and Kail mixture
- c) Kail
- d) Deodar
- e) Kail and Deodar mixture
- f) Chil
- g) Oaks, Ban, Mohru, Kharsu
- h) Conifer (Name) with Oak (Name) mixture
- i) Other broad leaves

- j) Conifer (Name) with other broad leaves
- k) Blanks

Each forest type will be named after the main species, if the species occurs in percentage greater than or equal to 60. Where no single species covers more than 60% of area, the type will be mixture of the main species contained therein. Against each forest type contained in the forest the information on the following parameters will be recorded.

- a) Crown density
- b) Age
- c) Slope
- d) Aspect
- a) Crown density: Crown density will be classified as under:
 - i) Very open : < .2
 - ii) Open: > .2 and < .4
 - iii) Medium > .4 and < .6
 - iv) High > .6

b) The age of the forest will be listed as per following criteria:

Age Size of the trees

Young regeneration Pole crop and younger i.e. dbh below 30 cm and equal

Middle If dbh is lower and equal to 60 cms and higher than 30 cms

Mature or over mature If dbh exceed 60 cms

c) The estimated slope categories will be recorded as under:

Gentle If the gradient is $<15^{\circ}$

Moderate If the gradient is $<30^{\circ}$

Steep If the gradient is $<45^{\circ}$

Very steep If the gradient is $<70^{\circ}$

Precipitous If the gradient is $>70^{\circ}$

d) The aspect will be recorded into the following eight categories:

- i) Northern
- ii) Northern Eastern
- iii) Eastern
- iv) South Eastern
- v) Southern
- vi) South Western
- vii) Western
- viii) North Western

B. Final Stock maps: After preparation of the preliminary stock map the forest, the forest will be thoroughly inspected by AWPO. The information recorded at the time of preparation of preliminary stock maps will be verified on spot and corrected as per spot.

II Description of the forest compartment

Simultaneously while carrying out the stock map of a particular forest, the information under various heading already prescribed, writing up of description of forest compartment/sub compartment should also be collected. Beside this the information on area and growing of each forest type should also find some place in the description. The areas should be worked out through dot grid method from stock maps. The state of boundaries for each forest should be very clearly described and suitable recommendations be made in this regard. The information on additional parameters should also be

collected and incorporated in the Forest compartment description. The specific recommendations with regard to splitting up of the compartment into sub-compartments in view of accessibility and the management practices to be prescribed should be made because it is not feasible to manage large forest compartments under single system for practice.

III Field Forms

- a) Plot description form
- i) Range
- ii) Block
- iii) Forest
- iv) Compartment/ sub-compartment
- v) Legal status: Whether reserved, demarcated protected, undemarcated protected, un-classed and private.
- vi) Geology: After examining the road side cutting as well as land slips in the forest, the geology of the areas will be studied and classified in respect of parent rock, its structure and hardness as under:

Sand Stone: Sand particles cemented by Ferruginous material. It is generally light brown in color.

Lime Stone: Where the calcium carbonate content is high. It is generally grey, brown and blue in color.

Conglomerate: Where different types of pebbles are aggregated to form a solid structure. It has different color in the same rock.

Shale: It is harder clay material which has lost its plasticity. This splits into slips parallel to original stratification.

Slate: These are similar to shales but more smooth having high mica content. It varies in colour, generally these are black but frequently green or purple.

Schists: These rocks are foliated (coming out in small chips) Schists have high mica content (shinning). Quartzite: Sand stone with greater hardness and are more crystalline. These are harder and heavier than sand frequently formed in colors like purple and brown. **Gneiss:** These rocks are banded rocks which are unlike with respect each other. These are like slate but very shiny. They have glassy appearance **Phyllite:** (high mica content). vii) Soil texture Examine the texture of the soil by filling with hand and classify in one of the following categories a) and record the soil type predominant in the area. b) Depth i) Clayey ii) Clay loam. iii) Loam. iv) Sandy loam v) Sandy vi) Pebbals vii) No soil Soil moisture: (Along with data of recording) The study of soil moisture in the plot. Take some soil in your hand, feel the presence of moisture in it.

i) Water logged: Where water stands on the soil and drainage is poor.

- ii) Moist: where soil moisture is high and ball may be formed from the dug up soil.
- iii) Semi moist: Soil moist but ball is not formed.
- iv) Dry: Soil is not moist at all.
- v) Humus:
 - a) Measure with foot ruler or scale
 - b) States of decomposition: Where decomposed, semi decomposed, not decomposed.
- vi) Aspects: As in the stock mapping
- vii) Altitude: It will be recorded with the use of GPS.
- viii) Slope: Measure with the help of dendrometer and record as

Precipitous If gradient >70⁰

Very steep If gradient 50^{0} and 70^{0} Steep If gradient 35^{0} and 50^{0} Moderate If gradient 15^{0} and 35^{0} Gentle If gradient 5^{0} and 15^{0}

Level If below 5⁰

- ix) Forest type: As per stock mapping.
- x) Crown density: As per stock mapping.
- xi) Age: As per stock mapping.
- xii) Regeneration: One digit: All seedlings and saplings less then 10 cms dbh (over bark) are to be considered as regeneration. Draw a circle of 2 mtr. radius around the sample points and count the number of seedlings and put the appropriate code:
 - a) More than 15- profuse

- b) 8 to less then 15 Adequate
- c) 1 to less then 8 Scanty
- d) None Nil

xiv) Number of storey's:

- a) whether forest is single storey or multi storied. Mostly the forest will be single storey.
- b) Type of forest in under storey, if forest is multi-storeyed
- xv) Shruby growth: With the name of shrub and extent of area.
- xvi) Herbs and medicinal plant if any. Name and areas.
- xvii) Cull: Status of trees regarding:
 - a) Fire burning
 - b) lopping
 - c) Decay
 - d) Snow damage.

xviii) Incidence of grazing: High, medium or low.

Who will do what:

The work of preparation of stock maps and writing up of compartment history file will normally be done by the working plan officer himself or his ACF not by any other officer below the rank of Forest Ranger depending upon the availability of the officers. Therefore, keeping in view of the paucity of time the work for preparation of stock maps and writing up of compartment history file will be done by ACF and Forest Range Officers under the supervision of Working Plan Officer and will be completed by the end of 31st March, 2013 as decided in the working plan meeting held on 26-12-2012 at Shimla. The fair and final copies of the stock maps will be prepared by trained drafts man and area of the forest and various stratum therein will be calculated by him using the appropriate dot grid scale for desired precision.

The collection of the field data, three crew each under the charge of Forest Ranger, here after known as crew leader will be working. Official below the rank of Deputy Ranger will however be not allowed to work as crew leader. Each crew will consist of one Forest Ranger, one Deputy Ranger, two Forest Guard, one Khalasi and one or two labourers as per requirements, depending upon the bushy growth inside the forest.

WPO-Cum-DFO Rampur

BIBLIOGRAPHY

A) Books:

A.R. Maslekar, Management of Forest in India: New opportunities, 2008

A.B. Lal, Silvicultural System and Forest Management.

B.H. Baden Powell, Manual of Jurisprudence for Forest officers

Collect, H., Flora Simlensis

Central Soil & Water Conservation Research & Training Centre, Dehradun Training Manual-Soil Conservation & Watershed

Management, Vol. II, 2007

Central Soil & Water Conservation Research & Training Centre, Dehradun, Participatory integrated Watershed

Management, 2006

Dr. Sukanta. K Nanda, Environmental Law, 2009

Dr. S.S. Negi, Indian Forestry through Ages, 1994

L.S. Khana, IFS, Principles and Practice of Silviculture.

N.S. Chauhan, Medicinal and Aromatic Plants of Himachal Pradesh.

Ram Parkash & L.S. Khana, Theory and Practice of Silvicultural System.

Rosecranz Armin, et. al (Ed), Environmental Law & Policy in India, 1991.

Ritwick Dutta & Bhupender Yadav, Supreme Court----ON Forest Conservation, 2011.

R.K. Luna, Plantation Forestry in India

Richard. P. Tucker, A Forest History of India.

Sagreiya, K.P, Forests & Forestry, National Book Trust of India, 1994.

Sharma H.C., IFS, H.P. Forest Settlement

Srivastava's Commentaries on Forest Laws, 2000.

Thakur, Kailash, Environmental Protection Law and Policy in India, 1999.

Upadhyay, Chander Bushan, Forest Law.

V.P. Agarwala, Forests in India.

B) Official Document & Reports:

Glover, H.M. Forest Settlement, Sutlej Valley, Bushahr State, 1921

Govt. of Himachal Pradesh, Notification issued under the Indian Forest Act, 1927, Part-I, Forest Printing Press, Kalaghat, Solan

Govt. of India, MOEF, Report of the National Forest Commission, 2006

Govt. of India, Planning Commission, First five Year Plan (1951-52 to 1955-56)

Govt. of India, Planning Commission, Second five Year Plan (1956-57 to 1960-61)

Govt. of India, Planning Commission, Third five Year Plan (1961-62 to 1965-66)

Govt. of India, Planning Commission, Fourth five Year Plan (1969-70 to 1973-74)

Govt. of India, Planning Commission, Fifth five Year Plan (1974-75 to 1978-79)

Govt. of India, Planning Commission, Sixth five Year Plan (1980-81 to 1984-85)

Govt. of India, Planning Commission, Seventh five Year Plan (1985-86 to 1989-90)

Govt. of India, Planning Commission, Eight five Year Plan (1992-93 to 1996-99)

Govt. of India, Planning Commission, Ninth five Year Plan (1997-98 to 2001-02)

Govt. of India, Planning Commission, Tenth five Year Plan (2002-03 to 2006-07)

Govt. of India, Planning Commission, Eleventh five Year Plan (2007-08 to 2011-12)

Govt. of India, Planning Commission, Twelfth five Year Plan (2012-13 to 2016-17) Govt. of India, Publication Division, New Delhi, India, 2010

Govt. of India, MOEF, National Working Plan Code, 2004

Govt. of India, Planning Commission, Himachal Pradesh Development Report, 2005

A.K. Mukerji, IFS, Working Plan of Rajgarh Forest Division (1961-62 to 1975-76)

Archana Sharma, IFS, Working Plan of Solan Forest Division (2002-03 to 2016-17)

Anjani Kumar, Working Plan of Kotgarh Forest Division (2012-13 to 2026-27)

Ashok Kumar Somal, IFS, Working Plan of Chopal Forest Division (2003-04 to 2017-18)

- C.L. Sudhera, IFS, Working Plan of Kotgarh Forest Division (1978-79 to 1992-93)
- I.D. Sharma, IFS, Working Plan of Sutlej Valley Forest of Sarahan Forest Division (1961-62 to 1975-76)
- J.S. Walia, IFS, Working Plan Kullu & Parvati Forest Division (1994-95 to 2009-10)
- P.C. Verma, Working Plan of Bilaspur Forest Division (1994-95 to 2008-09)
- R.C. Sharma, IFS, Working Plan of Dalhousie Forest Division (1969-70 to 1983-84)
- R.C. Bergal, IFS, Working Plan of Chamba Forest Division (1998-99 to 2012-13)
- R.K. Kapoor, IFS, Working Plan of Kotgarh/Rampur Forest Division (1993-94 to 2007-08)

Ranvir Singh, Working Plan of Mandi and Nachan Forest Division (1957-58 to 1976-77)

- R.C. Kang, IFS, Working Plan of Noorpur Forest Division (1-4-1991 to 31-3-2006)
- S.K. Pande, IFS, Working Plan of Suket Forest Division (1970-71 to 1985-86)
- S.D. Sharma, IFS, Working Plan of Karsog Forest Division (2012-13 to 2026-27)

Punjab Forest Leaflets: No.1 IA, 2, 4, 6, 8, 11 & 13

Indian Forest Record, Silviculture Series

C) Acts, Journals & Periodicals:

Indian Forest Act, 1927

Wild Life (Protection) Act, 1972

Forest (Conservation) Act, 1980

Environmental Protection Act, 1986

Mines & Minerals (Development and Regulation) Act, 1957

Forest Right Act, 2006

H.P. Forest Produce (Regulation of Trade) Act, 1982

H.P. Land Preservation Act, 1978

H.P. Forest Produce Transit (Land Routes) Rules 1978

H.P. (Sale of timber) Act, 1968

H.P. Minor Mineral (Concession) Revised Rules, 1971

Indian Penal Code

Criminal Procedure Code

Evidence Act

Easement Act

H.P. Land Revenue Act, 1954

H.P. Land Record Manual

H.P. Forest Manual Vol. I & Vol. IV

Punjab Forest Manual, Vol. III

All India Reporters (AIR)

Supreme Court Cases (SCC)

Criminal Law Journal (Cr. L.J)

Yojana

Kurukshetra

Down to Earth

The Indian Forester

Environmental and Forest Law Times

D) Encyclopedias & Dictionaries:

Encyclopedia of Social Sciences (1953)

Webster's Third New International Dictionary

P. Ramanatha Aiyar's Concise Law Dictionary, 2012